

School of Computer Science

Bangor University

Technical Report Number: CS-TR1-2009

Category: Research Report

Title: Using Control Charts for Detecting

Concept Change in Streaming Data

Author: Ludmila I. Kuncheva

TECHNICAL REPORT BCS-TR-001-2009 1

Using Control Charts for Detecting Concept
Change in Streaming Data

Ludmila I. Kuncheva Member, IEEE

✦

Abstract—We address adaptive online classification in the presence
of concept change. An overview of the machine learning approaches
reveals a deficit of methods for explicit detection of change when the
only information is the classification error of the streaming data. We look
to borrow answers from the longstanding research in monitoring process
quality by using control charts. Four methods for change detection are
detailed and compared in the paper: two from the machine learning
literature and two control charts (Shewhart and Sequential Probability
Ratio Test (SPRT)). Control charts would only signal a change. To exam-
ine empirically their effect on the classification accuracy, the Shewhart
and SPRT methods were equipped with a window resizing heuristic. We
chose to grow the window until a change has been detected, and shrink
it to a batch size upon detection. Experiments with 28 real data sets
were carried out, where change was simulated by swapping class labels.
Paired t-test on the classification error and paired Wilcoxon signed rank
test picked SPRT as the best change detection method.

Index Terms—Concept drift, Control charts, Changing Environments,
Online classifiers

1 INTRODUCTION

THE CLAIM that classifier technology has made sig-
nificant progress in the past few decades has been

recently challenged [15]. One of the arguments in Hand’s
paper is that real-life problems change with time, while
most of the pattern recognition and machine learning
research is focused on inventing ever more sophisticated
tools for solving static problems. However, along with
the strong tendency towards perfecting static models,
there does exist a rich body of literature related to
changing environments (most often termed “concept
drift”). Part of the problem is that this literature is
fairly dispersed, and related ideas are being developed
independently under different terminologies. Our study
was inspired by the similarity of the task of detect-
ing a concept change (machine learning) and that of
monitoring process quality (industrial engineering). The
latter can offer a spectrum of change detection methods
that have been the subject of substantial theoretical and
empirical research over the past 50 years.

When a classifier is faced with changes in the under-
lying problem, it needs a mechanism to adapt to these
changes. The first question here is whether an observed

• L. I. Kuncheva is with the School of Computer Science, Bangor University,
Bangor Gwynedd LL57 1UT, UK.
E-mail: l.i.kuncheva@bangor.ac.uk

variation is noise or a true change that requires some
form of action. Even if the classifier is being adapted
with each new observation, there is a need to detect a
change and subsequently “forget” or “unlearn” previous
knowledge. The easiest solution is to keep a window
over the streaming data and re-train the classifier on the
most recent window. The window size is crucial because
it determines the flexibility of the system, which needs to
match the style and pace of the changes. If the window
is too small, the classifier will tend to learn all the noise
in the data. Conversely, large windows will make the
system inert and insensitive to changes. To alleviate the
severity of this plasticity-stability dilemma, a window
of variable size can be applied [39]. Detecting a change
will shrink the window while a stable run will increase
it to a pre-specified maximum size. Managing a variable
window requires an explicit change detection.

In our scenario the classifier receives streaming data
and predicts a label for each incoming observation.
The true label becomes available immediately after the
prediction, so the classifier “knows” whether it has been
right or wrong. Unlikely as it sounds, this assump-
tion underpins almost all existing work in classification
in changing environments (concept drift, concept shift,
population drift) as well as incremental learning and
classification of streaming data. Although labels may not
be instantly available in many real life problems, scenar-
ios like this exist. For example, in a betting exercise, the
classification (prediction) is ‘win’ or ‘loss’. After the bets
are placed and the race is over, the outcome is available
straight away.

Suppose that the only parameter to be used in the
change detection is this correct/wrong outcome. Thus
the change detection method receives as input a binary
string, and raises an alarm if a “sizable” increase in
the error rate has occurred. This paper proposes to use
control charts (Shewhart and the Sequential Probabil-
ity Ratio Test (SPRT)) to serve as change detectors in
online classifiers. The rest of the paper is organised as
follows. Section 2 surveys the literature on classification
in changing environments in the context of change de-
tection. As a result, two methods, called here Window
Resize Algorithm for Batch Data (WRABD) [21] and
Warning Window Algorithm for Instance Data (WWAID)
[13], were found and further analysed. Control charts

2 TECHNICAL REPORT BCS-TR-001-2009

are introduced in Section 3. Section 4 presents a brief
simulation-based comparison between the change detec-
tion methods. Experimental results on 28 real data sets
with artificially introduced concept change are given in
Section 5. Section 6 contains our final remarks.

2 CHANGE DETECTION: RELATED WORKS

The approaches to handling concept drift can be cate-
gorised with respect to

1) Data chunks. Depending on the organisation of
the input data, we can classify the approaches
into instance-based (streaming data) and batch-based
(streaming batches) [36]. The choice of approach
depends largely upon the way and the speed
the data is collected, and the time framework for
making a decision/prediction. Streaming data can
be converted into streaming batches. The reverse
is also possible but batch data usually comes in
massive quantities, and instance-based processing
may be too time-consuming to be applicable.

2) Information used. Another possible division stems
from the type of information that is used to detect
a change and update the classifier model.

• Probability distributions. Past data is “forgotten”
if the new distribution does not accommodate
it well enough [9], [14], [26], [32].

• Feature relevance. New distributions may ren-
der irrelevant some features (or combinations
of attribute values) that were relevant in the
past [7], [11], [16], [38]. Keeping track on the
best combination of predictive features (clues)
makes it possible to train a relevant classifier
for the most recent data distribution.

• Model complexity. Some classifier models are
sensitive to change in the data distribution. For
example, explosion of the number of rules in
rule-based classifiers or the number of support
vectors in SVM classifiers may signify a con-
cept drift.

• Time stamp. The time an instance or a batch has
been observed can be taken as input variable
in the classifier [5], [17].

• Classification accuracy. This is the most widely
used criterion for implicit or explicit change
detection. Included in this group are most en-
semble methods for changing environments:
Winnow variants [25], [27], AdaBoost variants
[10], [29], “replace-the-loser” approaches [22],
[23], [33], [35], [37]. Many single classifier mod-
els also evaluate the accuracy either to select
the window size for the next classifier [3], [13],
[19]–[21], [24] or to update the current model
[2], [18], [39].

3) Change detection mode. The approaches can be
split into explicit (detecting a change and acting
upon it, for example by changing the window size)
and implicit (using a forgetting heuristic regardless

of whether or not change is suspected, for example,
modifying the weights of the ensemble members or
selecting instances based on their recent accuracy).

4) Classifier-specific versus classifier-free. In the
classifier-specific case, the forgetting mechanism
can only be applied to a chosen and fixed classifier
model [2], [7] or classifier ensemble [29]. In the
classifier-free case any classifier can be used
because the change detection and the window
update depend only on the accuracy of the
classification decision, and not on the model [13],
[21].

This study is focused on a general set-up that operates
with minimal amount of information. We assume that
the only information we have access to is a streaming
data of zeros and ones, indicating whether the prediction
of the class label for the respective observation has been
correct or wrong. Using the classification of approaches
offered above, the methods we are interested in comply
with the following 4-point description:

◦ Data chunks = any (instance-based or batch-based);
◦ Information used = classification accuracy;
◦ Change detection mode = explicit;
◦ Classifier-specific versus classifier-free = classifier-free.

The following studies were found to be the closest
match:

• Klinkenberg and Renz [21] propose a method for
determining the window size. It uses past batches of
data to estimate changes in the error. A data window
is maintained, on which the current classifier is trained,
called here the training window. One data batch is
examined at a time. Let ec be the error rate of the
current classifier estimated on the current batch. If ec

exceeds a given threshold, then a change is signalled.
A further comparison with the error on the previous
batch, ec−1, guides the amount by which the training
window is resized. If the new error is much larger, i.e.,
ec > 1 − β(1 − ec−1), then a rapid change is suspected
(concept shift), and the training window is reduced to
contain only the latest batch. If the error on the current
batch is not much larger, then the detected change
is gradual (concept drift) and the training window is
reduced by a factor γ. If change has not been detected
at all, the current batch is added to the training window.
The threshold for the detection is determined using the
errors of the m previous data batches, which we call the
detection window. Upon change detection, we collapse
the detection window. No further change detection is
allowed until the detection window reaches the size of
m batches. The method is named here Window Resize
Algorithm for Batch Data (WRABD), and is detailed in
Figure 1.

The algorithm is designed for information filtering
where a stream of documents have to be classified as
relevant or non-relevant. Along with the classification

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 3

WINDOW RESIZE ALGORITHM FOR BATCH DATA (WRABD)

1) Choose the parameter values1:

N , the batch size;

m, the number of batches for evaluating the old accuracy (detection window, m = 10);

f , a confidence interval parameter (f = 5);

β, a factor for assessing the type of the change – gradual or abrupt (β = 0.5);

γ, the window shrinking factor (γ = 0.5).

2) Run a warm-up stage by collecting m batches that will form the initial training window and detection window.

3) For c = m + 1, m + 2, ...

a) Train the chosen classifier model with the current training window and estimate its error ec on the current

batch.

b) If change has not been detected in the past m steps, then calculate the old error, p̄, as the error averaged across

the pervious m batches, p̄ = 1

m
(ec−m + . . . + ec−1). Estimate its standard deviation σ̄.

i) If ec > p̄ + f σ̄√
m

and ec > 1 − β(1 − ec−1), then a rapid change is suspected (concept shift). Take the last

batch as the new training window. Record detection at step c (this will collapse the detection window).

ii) Else, if ec > p̄ + f σ̄√
m

but ec ≤ 1 − β(1 − ec−1), the suspected change is considered to be gradual (concept

drift). Reduce the training window by a factor of γ (or use the last batch if the training window becomes

smaller than N). Record detection at step c.

iii) Else (no change is detected because ec ≤ p̄ + f σ̄√
m

), add the current batch to the training window.

c) Else (change has been detected within the past m steps) add the current batch to the training window.

1All parameter values are quoted from [21]. These are said to be arbitrary and not a result of an optimisation.

Fig. 1. Klinkenberg and Renz [21] window resize algorithm for batch data.

error, the authors use two more performance metrics:
Recall (the probability that the classifier recognises a
relevant document as relevant) and Precision (the prob-
ability that the document is actually relevant given that
it was classified as relevant). The window is modified if
any one of the three measures signals a change.

• The drift detection method proposed by Gama et al.
[13] keeps track on the probability of error for streaming
instances. The training window of instances grows until
a change is detected. When the error is found to exceed
a certain threshold, the system enters a warning mode
and stores the time, tw, of the corresponding instance.
If the error drops below the threshold again, the warn-
ing mode is cancelled. However, if the error exceeds a
second (higher) threshold while in the warning mode, a
change is recorded. The new training window is taken
to be the streaming data that came after time tw. The
classifier is re-trained and the warning and detection
thresholds are re-set. Figure 2 shows the details of the
algorithm (with some improvisations for the parts that
were not specified in the original publication).

A modification of this algorithm due to Baena-Garcı́a
et al. [3] is shown to be better than the original algorithm
for some data sets and worse for others. The authors
take a different metric in the place of the error rate – the
distance between two consecutive errors. The window
resize procedure is governed by the same heuristics.
There is no theoretical or intuitive justification as to why
the new metric will be better than taking just the error

rate. For i.i.d. binary sequences with error rate p, the
distance between two consecutive errors is a random
variable with geometric distribution whose expected
value is 1/p. It does not make much difference whether
we evaluate p or 1/p and compare the value with a
threshold in order to detect a change. It can be argued
that the reported differences in the performance of this
method and WWAID are largely due to the different uses
and values of the warning and detection thresholds.

Each of the algorithms comes with procedures for
both change detection and modifying the data window.
The detection parts can be “cut out” and analysed with
respect to their detection efficiency, similar to the way
control charts are compared to one another. Change
detection algorithms can be compared on the number
of observations between the detection and the occur-
rence of the change, ∆ =< time of detection > − <

time of occurrence > (provided the observations come one
at a time).

The derivation of the expression for ∆WRABD is given
in the appendix. For WWAID, we faced a problem
because the of the choice of the detection threshold
pmin + smin. Simulation runs showed that the value of
this threshold is established early on in the process when
both p̂ and ŝ vary substantially. This sets up an arbitrary
reference value which leads to spurious detection pat-
terns. This observation does not suggest that this method
is not useful in practice; it only prevents us from laying
out assumptions and finding a closed form expression

4 TECHNICAL REPORT BCS-TR-001-2009

DRIFT DETECTION - WARNING WINDOW ALGORITHM FOR INSTANCE DATA (WWAID)

1) Choose the parameter values: Tw the factor for the warning threshold (Tw = 2), Td the factor for the detection

threshold (Td = 3), w0, the warm-up window size (w0 = 30). Initialise the minimum classification error pmin = ∞

and the corresponding standard deviation smin = ∞. Set the warning zone flag, fw, to false.

2) At time t (t > w0), classify the new instance xt using the classifier trained on the current window of size wt. Update

the error rate over the current window. Let p̂ be the updated error rate and ŝ =
√

p̂(1 − p̂)/wt be the standard

deviation.

3) If p̂ + ŝ < pmin + smin, then update the minimum error by pmin = p̂ and smin = ŝ.

4) If (p̂ + ŝ > pmin + Twsmin) and fw = false, then switch the warning zone flag fw = true and set up the warning time

tw = t.

5) If (p̂ + ŝ < pmin + Twsmin) and fw = true, then cancel the warning zone: fw = false, tw = ∞.

6) If (p̂ + ŝ > pmin + Tdsmin), then change has been detected. Take as the new window all the observations since tw

(size wt+1 = t − tw + 1), set pmin = ∞, smin = ∞, fw = false, and tw = ∞.∗ Otherwise, update the window by

adding xt to it (size wt+1 = wt + 1).
∗It is not explicitly specified by Gama et al. [13] what action should be taken if the warning window is too small or if there has not been a warning zone

at all. A possible course of action would be to have a fixed window of minimum size (w0) for w0 forthcoming iterations.

Fig. 2. Gama et al. [13] warning window algorithm for streaming data

for ∆WWAID.
We carry forward WRABD and WWAID because they

were the only two change detection algorithms we
found, which comply with the scenario defined by the
4-point description in Section 2.

3 DETECTING A CHANGE USING CONTROL
CHARTS

3.1 Shewhart control chart

Control charts have long been used for monitoring pro-
cess quality. Consider a streaming line of objects with
probability p of an object being defective. Samples of
N objects (batches) are taken for inspection at regular
intervals. The number of defective objects is counted and
an estimate p̂ is plotted on the chart. It is assumed that
the true value of p is known (from product specification,
trading standards, etc.) Using a threshold of fσ, where
σ =

√

p(1 − p)/N , a change is detected if p̂ > p+fσ. This
model is known as Shewhart control chart, or also p-chart
when binary data is being monitored. The typical value
of f is 3, but many other alternative and compound
criteria have been used1.

The expected number of batches to detection is called
the Average Run Length (ARL). Here we are interested
in the number of observations to detection, ∆Shewhart.
Suppose that an abrupt change has occurred and the
new probability of an item being defective is p∗. The
number of errors (defective items) within a batch is a
binomial random variable with probability of success
p∗, and number of trials N . Given that N is sufficiently
large, we can approximate the error rate with a normal
random variable with mean p∗ and standard deviation
σ∗ =

√

p∗(1 − p∗)/N . Assuming that the change occurs

1. http://en.wikipedia.org/wiki/Control chart

before the batch is taken for inspection, the probability
of detecting a change within a single batch is

Pd = 1 − Pr(p̂ ≤ p + fσ)

= 1 − Φ

(

p + f
√

p(1 − p)/N − p∗
√

p∗(1 − p∗)/N

)

.

The Average Run Length is a random viable with
geometric distribution, whose expected value is 1/Pd.
Therefore the number of observations to detection is

∆Shewhart =
N

Pd

. (1)

If the change occurs within batch Bc, so that K obser-
vations come from the “old” distribution (p) and the
next N − K come from the “new” distribution (p∗), the
number of observations to detection can be represented
as

∆Shewhart = (N −K)+(1−Pr(detected in Bc))
N

Pd

. (2)

The number of defective objects in batch Bc is a sum
of two binomial random variables with distributions
B(K, p) and B(N − K, p∗), respectively. Approximating
each with a normal random variables (conditions permit-
ting), the proportion of errors in Bc can be approximated
with a normal random variable with mean

K

N
p +

N − K

N
p∗

and standard deviation
1

N

√

Kp(1 − p) + (N − K)p∗(1 − p∗)

Therefore

Pr(detected in Bc) = 1 − Pr(p̂ ≤ p + fσ)

= 1 − Φ

(

(N − K)(p − p∗) + f
√

p(1 − p)N
√

Kp(1 − p) + (N − K)p∗(1 − p∗)

)

.

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 5

Substituting in (2), we obtain the number of observa-
tion to change, ∆Shewhart. Note that (1) is subsumed by
(2) for K = 0, as in this case Pr(detected in Bc) = Pd.

Avoiding the normal approximation altogether, the
predicted number of observations to detection can be
expressed as

∆Shewhart = (N − K) +
N

1 − B(he, N, p)
×

he
∑

j=0

j
∑

i=0

b(i,K, p)b(j − i,N − K, p∗) (3)

where b(r,M, q) is the binomial probability mass func-
tion for a distribution with parameters M and q. The
threshold he is the number of errors beyond which a
change is detected. he and the factor correction calcu-
lated as in (10) and (11) respectively ensure that the
normal approximations of Pd and Pr(detected in Bc),
when substituted in (2), lead to the same answer as (3).

Shewhart chart is both simple and elegant, requiring
only two parameters, N and f , as p can be estimated
from past observations. Figure 3 details the Shewhart
algorithm in the notation of change detection.

SHEWHART

1) Choose the parameter values:

f the factor for the confidence interval (f = 3);

N , the batch size.

2) At time c, evaluate the error ec on the current batch

of data Bc.

3) Declare that change has been found if ec exceeds

the f -sigma limit, ec > p + fσ.

Fig. 3. Shewhart change detection algorithm for stream-

ing batches of data

Adding the following 3 extra detection criteria to the
original 3-sigma rule makes up a compound detection
rule known as ‘Western Electric rules’: (i) Two out of
three consecutive points exceed the 2-sigma limit; (ii)
Four out of five consecutive points exceed the 1-sigma
limit; (iii) Nine consecutive points are above p. Theoreti-
cal analysis of compound detection rules is not straight-
forward. The most appealing approach is to describe
the process as an absorbing Markov chain and evaluate
the Average Run Length as the number of steps to
absorption [1], [4], [8], [12], [34]. The preferred empirical
approach is simulation with various types of change.

3.2 CUSUM and SPRT charts

CUmulative SUM (CUSUM) charts are deemed to be
more sensitive to gradual changes than Shewhart charts
[28], [31]. There are two variants called “Binomial” and
“Bernoulli” CUSUM charts [31]. The idea is to keep
the cumulative sum of the errors and apply a change-
detection test on that. In the Binomial version, data

comes in batches. Let {xt,1, xt,2, . . . , xt,N} be the binary
sequence for batch Bt, where xt,k = 1 means that object
k from batch Bt has been misclassified and xt,k = 0 will
indicate a correct class label. Starting with a sum S0 = 0,
the iterative formula for calculating the control statistic is
[31]. (Reynolds and Stoumbos [31] point out that there
is a slight difference in the calculation of this statistic
compared to the mainstream literature. The change has
been adopted for convenience of the analyses, and is said
to have no practical effect on the method.)

St = max{0, St−1} +

(

N
∑

i=1

xt,i − Nγ

)

, (4)

where

γ = r1/r2, r1 = − ln
1 − p∗

1 − p
, r2 = ln

p∗(1 − p)

p(1 − p∗)
. (5)

St is compared with a control limit h, and if St > h,
then change is signalled. In a Bernoulli CUSUM chart,
the observations come one at a time (streaming instances
approach). The control statistic is the same as (4) with
N = 1. The detection rule is also the same. The value of
the control limit, h, is determined in regard to all other
parameters of the detection scheme. In process control
it is important to choose ∆CUSUM and derive h from it
rather than the other way around.

Reynolds and Stoumbos [30] provide a closed form
approximation of the relationship between the design
parameters and the control limits for another detection
scheme based on Wald’s Sequential Probability Ratio Test
(SPRT). SPRT is perceived to be even more successful
than CUSUM charts. The observations come one at a
time and the cumulative sum of errors at step t is com-
pared with a reference value γt. If X denotes the error
rate, the statistical test being carried out is H0 : X = p
against H1 : X = p∗. If the difference between the
cumulative error count and the reference value is greater
than a control limit h, then change is detected and H1 is
accepted. If, on the other hand, this difference is smaller
than another threshold g, then H0 is accepted. If H0 is
accepted, a new SPRT is started. In our scenario, the new
SPRT is started immediately after the decision. This is
repeated until a change is detected. Figure 4 shows the
SPRT change detection method.

The average number of observations to signal is

∆SPRT = Expected number of SPRT to detection ×

Expected length of SPRT to decision

Suppose that the change from p to p∗ occurs before the
first SPRT is started. Let Pd = 1 − β be the probability
that a single SPRT detects a change (accepts H1) when
the change is present. Then

Expected number of SPRT to detection =
1

1 − β
. (6)

Reynolds and Stoumbos [30] also provide approxima-
tions for the average length of an SPRT for both cases,

6 TECHNICAL REPORT BCS-TR-001-2009

SPRT

1) Choose the parameter values: α, the probability of type I error (reject H0 when X = p) and β, the probability of type

II error (accept H0 when X = p∗). Calculate r1, r2 and γ from (5), and the limits h and g using the approximations

h =
1

r2

ln

(

1 − β

α

)

−
(1 − 2p)

3
, g =

1

r2

ln

(

β

1 − α

)

.

2) At time t, start an SPRT setting its counter to j = 1. Let xt,j be the jth (0/1) observation coming after SPRT was

started.

• If
∑j

i=1
xt,j − jγ ≤ g, accept H0, set j = 1, and start a new SPRT.

• else, if
∑j

i=1
xt,j − jγ ≥ h, accept H1, declare a change and STOP.

• else, set j = j + 1 and continue the current SPRT.

Fig. 4. SPRT change detection algorithm for streaming data [30]

when X = p and when X = p∗. Let L(ζ) be the
expected length of an SPRT process until decision is
made either way, given that observations come with
probability X = ζ. Then

L(p∗) ≈
(1 − β) ln 1−β

α
+ β ln β

1−α

r2p∗ − r1

(7)

and

L(p) ≈
α ln 1−β

α
+ (1 − α) ln β

1−α

r2p − r1

(8)

From (6) and (7),

∆SPRT =
L(p∗)

1 − β

The scenario where a true change is being detected
is called ‘out of control’ whereas a false detection sce-
nario is called ‘in control’. This terminology comes from
process monitoring where ‘no change’ means that the
process is in control and an alarm should be raised if
the measured quantity slips out of control.

4 COMPARISONS BETWEEN THE CHANGE DE-
TECTION METHODS

Figure 5 shows the number of observations to detection
(∆) for WRABD, Shewhart and SPRT for two batch sizes,
N = 10 and N = 50. 100 runs were carried out where
a random i.i.d. binary sequence was generated for each
run and each method. The value of p∗ was varied as
p∗ = p + offset, where ‘offset’ took all the values in
{0.05, 0.06, . . . , 0.25}. The observations were generated
and fed to the detection method one at a time, and the
process was stopped as soon as change was detected.
The number of observations to detection was stored for
each run. The detection window length for WRABD was
m = 5 batches and the detection factor was f = 3. The
values of all the other parameters were fixed as in the
algorithms’ descriptions.

Displaying WWAID results would have been mislead-
ing because of the large percentage of failed detections.
As explained earlier, if change was detected, ∆ would
be competitive to that of the other methods but in about

Number of observations to detection (∆)

0.05 0.1 0.15 0.2 0.25
0

100

200

300

400

500

600

WRABD
Shewhart
SPRT

offset δ

(a) N = 10

Number of observations to detection (∆)

0.05 0.1 0.15 0.2 0.25
0

500

1000

1500

2000

offset δ

(b) N = 50

Fig. 5. Average ∆ and 95% confidence intervals obtained
from 100 runs with p = 0.20 and p∗ = p + δ. The warm-up
length for WRABD was m = 5 batches.

half of the runs, change was not detected within the first
2000 observations. Thus averaging the existent detection
lengths and ignoring the non-detection will give a false
impression of the method.

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 7

It appears that for the chosen settings, the best al-
gorithm is WRABD followed by SPRT. However, to
evaluate the methods in full, we need to consider their
in-control behaviour. Table 1 provides the number of
observations to false detection for the 4 methods. The
estimated values are the averages of 100 simulation runs
with p∗ = p = 0.2. The 95% confidence intervals are also
shown.

TABLE 1
Simulation results (± 95% confidence interval), and the

predicted number of observations to false alarm
(in-control)

N = 10 N = 50

Algorithm Simulation Predicted Simulation Predicted
WWAID 196 ±215 – 439 ±288 –
WRABD 62 ±10 60 372 ±58 371
Shewhart 1614 ±340 1570 20022 ±3656 19911
SPRT 968 ±162 978 1068 ±212 978

The in-control ∆SPRT is L(p)/α. To calculate L(p) (8),
we need to specify a predicted value of p∗ in order to
be able to initialise the parameters of the SPRT. The
results in the table are for p∗predicted = 0.35. In the case
of WWAID, the detection failure, which was a severe
drawback for the out-of-control scenario, can be counted
as an asset now.

Taking into account both out-of-control and in-control
behaviour, WRABD and SPRT stand out as the two
main rivals. While WRABD is quicker to detect small
changes, it is also quicker to raise a false alarm. The
difference between the methods are less pronounced
for larger values of the offset δ. Thus if the change in
the classification problem is drastic (e.g., when some
class labels are swapped), the methods may be ranked
differently.

Another caveat is that the analyses of Shewhart and
SPRT always assume that p and p∗ are given in advance.
While this is reasonable in monitoring established pro-
cesses, in classification we only have online estimates
(not necessarily very good ones) of these probabilities.
Therefore it is imperative to evaluate the methods in a
real-world scenario. The main question is still whether
using one algorithm or another makes a substantial
difference to the classification accuracy in changing en-
vironments.

Prediction formulas for a linear trend for the Shewhart
and CUSUM algorithms have been derived elsewhere
[4]. The analysis here only applies to abrupt change, and
the simulations were run to reflect this.

5 EXPERIMENTAL RESULTS

5.1 Datasets

Twenty eight real data sets were used in the experiment.
They are shown in Table 2 sorted by the total number of
objects. The features in all data sets are numerical and
there are no missing values.

TABLE 2
Datasets used in the experiment

Dataset Features Classes Objects Source
iris 4 3 150 UCI1

wine 13 3 178 UCI
sonar 60 2 208 UCI

laryngeal1 16 2 213 Collection2

glass 9 6 214 UCI
thyroid 5 3 215 UCI

votes 16 2 232 UCI
voice3 10 3 238 Collection
breast 9 2 277 UCI
heart 13 2 303 UCI
liver 6 2 345 UCI

spect 44 2 349 Collection
ionosphere 34 2 351 UCI
laryngeal3 16 3 353 Collection

voice9 10 9 428 Collection
wbc 30 2 569 UCI

palynomorphs 31 3 609 private3

laryngeal2 16 2 692 Collection
pima 8 2 768 UCI

vehicle 18 4 846 UCI
vowel 11 10 990 UCI

german 24 2 1000 UCI
image 19 7 2310 UCI

scrapie 14 2 3113 private4

spam 57 2 4601 UCI
phoneme 5 2 5404 UCI
satimage 36 6 6435 UCI
pendigits 16 10 10992 UCI

1UCI [6] http://www.ics.uci.edu/∼mlearn/MLRepository.html
2Collection http://www.informatics.bangor.ac.uk/∼kuncheva/
activities/real data full set.htm
3Images of pieces of kerogen extracted from microscope images of
palynomorphs
4Data on scrapie disease in sheep (related to BSE in cows), provided
by DEFRA, UK, http://www.defra.gov.uk/

5.2 Experimental set-up

The online linear discriminant classifier (O-LDC) was
used in all experiments. Together with the four change
detection methods considered hitherto, we coded the do-
not-update and the fixed window methods. The size of
the window was set at N = 50, and this was adopted
as the batch size for all methods. With each data set, we
first took aside a 10% stratified sample to be used for
testing. Another stratified sample of N = 50 objects was
taken from the remaining 90% of the data for training the
initial classifier.2 The remaining part of the training data
was augmented to size 1000, and shuffled to simulate
i.i.d streaming data.

As an example, consider a data set of 400 objects.
A random subsample of 40 objects is removed to be
used for testing, leaving 360 objects for training. Another
random stratified sample of 50 objects will train the
initial classifier. The remaining 310 objects will be pooled
with a random sample of 690 taken from that set, to
make up the online data of 1000 objects.

One object from the online data set is submitted at

2. When N was less than the number of features, the initial covari-
ance matrix was taken to be the identity matrix, reducing the linear
discriminant classifier to the nearest mean classifier with Euclidean
distance.

8 TECHNICAL REPORT BCS-TR-001-2009

a time and labelled by the current classifier. As it is as-
sumed that the true label becomes available immediately,
we know whether the object has been correctly labelled.
This 0 or 1 is fed to the respective detection method.
The batch-based methods (Fixed Window, WRBAD and
Shewhart) will only issue a signal after they have seen
a whole batch of 50 objects. The instance-based methods
(WWAID and SPRT) may signal at any observation.

The parameter choices for the methods were not opti-
mised. They are given in Table 3.

TABLE 3
Parameter values used in the experiments. (The

notations are as in the method description)

Fixed window WWAID WRABD Shewhart SPRT
N = 50 w0 = 50 N = 50 N = 50 α = 0.05
– Tw = 2 f = 3 f = 3 β = 0.05
– Td = 3 m = 5 – –
– – β = 0.5 – –
– – γ = 0.5 – –

If change is detected, the window is resized. The re-
sizing heuristics for WRABD and WWAID are specified
within the method descriptions. For Shewhart and SPRT
we adopted the following simple rule. While there is
no change, keep the window growing. Here we use the
fact that O-LDC can be updated in constant time with
each new observation, and so the training window can
be practically unlimited. As soon as change is detected,
the window is shrunk to the last batch of 50 objects and
a new linear classifier is trained on that.

The analyses and the simulations in Section 4 assumed
a “sterile” environment where the error of the classifier
did not change along with the constant updates of the
classifier. In real-life situations, the classifier may change
with each new observation or batch, so the thresholds for
the Shewhart and SPRT methods are not constant. What
is more, there is no pre-assigned values for p and p∗,
so the initial thresholds must be estimated from data.
The strategy adopted here was as follows. The initial
thresholds were estimated using the training error of the
initial classifier, etraining. The thresholds were updated
with each new observation. The value p needed for
the update was calculated as the proportion of wrong
predictions since last change detection or since the start
of the experiment, if there has been no detection. The
predicted value of p∗ needed for initialising SPRT was
set at p∗predicted = etraining +0.3, and was updated at each
step, together with p, using the same offset of 0.3. We
put a lower limit N for the size of the detection window
for the instance-based methods SPRT and WWAID. In
case the last detection was sooner than N steps back,
the classifier kept being updated but change detection
was withheld, until the detection window reached size
N .

The classification error was evaluated on the testing
set after each new observation, giving a sequence of 1000
values. This experiment was run 100 times for each data
set and each method. The runs were synchronised for

all 6 detection methods. This means that, in each run,
all methods received exactly the same training, testing
and online data sets, and the 1000 objects in the online
data set were submitted in the same order.

We simulated abrupt changes at step 400 and then
at step 800. Following Klinkenberg’s model, the change
was implemented by picking randomly two classes in
the data set and swapping their labels. If there were only
two classes originally, the labels would be swapped at
step 400 and returned to the initial labels at step 800.

5.3 Results

Figure 6 displays the results with the 6 methods. Each
plot shows the classification error as a function of “time”,
i.e., the number of the incoming observations. The plot-
ted error values are the averages across the data sets and
across the 100 runs for each data set. Clearly data sets
have very different errors and an average estimate of the
error would not make sense as a value. However, we
observed a compelling similarity among the patterns of
the error across the data sets, and this justifies the choice
of display. As a reference, in each subplot we show also
the error pattern with the Fixed window method.

The change detection patterns of WWAID, WRABD,
Shewhart and SPRT are displayed in Figure 7. The x-axis
corresponds again to the incoming observations. The y-
axis represents the average number of times (out of 100
runs), a change has been detected at observation x. The
ideal pattern is also shown.

WWAID WRABD

Shewhart SPRT

Fig. 7. Average number of detections out of 100 runs.
The ideal detection pattern with singleton peaks at obser-
vations 400 and 800 (height 100) is also plotted.

To measure the overall quality of a method we chose
the average error across the 1000 incoming observations.
Let Ei,j,k be the error of the k-th run for method i
and data set j, where k = 1, . . . , 100, i = 1, . . . , 6,
j = 1, . . . , 28. The methods were ranked on each data
set from 1 (best) to 6 (worst) using Ēi,j,•, where index •
means average across the possible values of the index.
Table 4 shows the 6 methods, sorted by their average

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 9

500 1000
0

0.2

0.4

0.6

0.8
No update

500 1000
0

0.2

0.4

0.6

0.8
Fixed Window

500 1000
0

0.2

0.4

0.6

0.8
WWAID

500 1000
0

0.2

0.4

0.6

0.8
WRABD

500 1000
0

0.2

0.4

0.6

0.8
Shewhart

500 1000
0

0.2

0.4

0.6

0.8
SPRT

Fig. 6. Classification errors for the 6 window updating methods. The Fixed window pattern is shown in each plot for
reference.

ranks. Friedman’s ANOVA on the ranks shows that
there are significant differences between the 6 methods
(χ2 = 108.43, df = 5, p ≈ 0). The entries in Table 4 show
the p-values for the paired Wilcoxon signed rank test.
The input for each test was the paired data for methods
i1 and i2 and data set j, for example, Ei1,j,• and Ei2,j,•

for j = 1, . . . , 28. Values below 0.01 indicate a significant
difference between the methods.

The table shows that SPRT outperforms all the other
methods, followed by the group of the three change-
detection methods. Fixed window is better than No
update but worse than WRABD. Schematically,

SPRT > {Shewhart, WWAID, WRABD}
> Fixed window > No update

To detail the comparison even further, paired t-test
was carried out for each pair of methods and each data
set. The paired data for methods i1 and i2 and data set j,
for example, were Ei1,j,k and Ei2,j,k for k = 1, . . . , 100.
Each method participates in 5×28 = 140 comparisons.
Table 5 shows the win/loss scores. Column ‘Wins’ is
the total number of pairwise comparisons where the
method was found significantly better (α = 0.05) than
the competitor and column ‘Losses’ is the number of
comparisons lost against the other method. The num-
ber of draws is therefore 140−Wins−Losses. The last
column shows a performance index (PI) calculated as
Wins−Losses. Note the significant gap in PI between
SPRT and the next best method (Shewhart) and the one
between WRABD and the Fixed window method.

Further comments on the individual methods are
given below

TABLE 5
Win/Loss results and

Performance Index (PI) = Wins – Losses

Method Wins Losses PI
SPRT 133 3 130

Shewhart 82 49 33
WWAID 80 47 33
WRABD 69 57 12

Fixed window 25 112 –87
No update 8 132 –124

1) No-update. The No-update method is expectedly the
worst. It shows a seemingly strange drop in the
error from step 800 onwards. The reason for this
is that a large proportion of the data sets consist
of two classes only. In this case, from step 800 to
step 1000 the class assignment will be exactly as
the original one, to which the classifier has been
tuned for the first 400 steps. The classifier “still
remembers” the first part of the data set, and this
puts it in a privileged position. The initial dip in the
error is not surprising either. Since we use O-LDC
with all methods, the difference in the errors will
only come from insufficient or inadequate training
data. In the case of the No-update method, the
training set grows without interruption, leading to
a stable lowest error, until the first change.

2) Fixed window. The behaviour of the Fixed Window
classifier is also consistent with the expectation.
The classifier shows stable performance on all the
batches except on the ones where the old classifier

10 TECHNICAL REPORT BCS-TR-001-2009

TABLE 4
Average ranks and Wilcoxon signed rank test results

Method Average 2 3 4 5 6
rank

1 SPRT 1.11 0.000004 0.000004 0.000011 0.000004 0.000004
2 Shewhart 2.86 0.909351 0.412347 0.000004 0.000005
3 WWAID 3.04 0.284504 0.000004 0.000004
4 WRABD 3.29 0.000046 0.000004
5 Fixed window 5.00 0.001129
6 No update 5.71

is completely inadequate. The error is high for
one batch only, and drops to the basic value with
the following batch. Apparently, training O-LDC
with a larger sample than N = 50 is beneficial,
as demonstrated by WWAID, Shewhart, SPRT and
even No-update.

3) WWAID. On the simulations, WWAID was found
to have quite a large variability in the num-
ber of observations to detection ∆. Nevertheless,
this method seems to detect the changes quickly
enough, at the same time keeping the false detec-
tion rate to minimum. The crucial factor for this
good behaviour is that the changes in the error are
drastic, larger than the offset δ used in the previous
simulations.

4) WRABD. WRABD is a close competitor to the con-
trol chart methods. It does not rely on pre-assigned
threshold values. In fact, its detection pattern is
more accurate than that of Shewhart (Figure 7).
The batch update, however, is slower to follow
the detection than an instant update as in SPRT,
which comes as a disadvantage in terms of overall
accuracy.

5) Shewhart. The “chainsaw effect” seen in Figure 6
comes from the multiple false detections as indi-
cated in Figure 7. This is inconsistent with the sim-
ulation results in Section 4 which rank Shewhart
as the method with the best in-control behaviour,
i.e., largest ∆ to false alarm. The reason for this
discrepancy is the way we chose to update the
threshold. In the original method the threshold
is set in advance to the correct known value of
p + 3σ. Here the threshold was updated at each
step as the average error since the last detection.
This choice may have put the Shewhart method
at disadvantage. The same strategy was applied to
SPRT but it seemed to have coped with the variable
threshold much better.

6) SPRT. The abrupt changes simulated by swapping
class labels lead to a drastic increase in error, which
is expected to be picked within the first batch by
both Shewhart and WRABD methods. However,
the batch detection methods can only signal a
change after a whole batch while SPRT can do that
at any time. This explains the rapid dip in the error

shortly after the change occurs.

The overall results from the experimental study favour
SPRT followed by Shewhart, WWAID and WRABD.

6 CONCLUSIONS

We investigated the suitability of control charts, specifi-
cally Shewhart and SPRT, as change detection methods
for classification in changing environments. Two meth-
ods found in the machine learning literature, termed here
WWAID and WRABD, were also studied. The analysis
and the simulations of abrupt change did not pick a
clear winner among the methods, but favoured SPRT
and WRABD followed by Shewhart.

Since the acid test for all four methods is their clas-
sification performance, we simulated abrupt change on
real data sets by swapping class labels. We augmented
the set of methods with two straw men: the No update
classifier, where no changes were being detected, and
the Fixed window classifier, where a new classifier was
trained on each new batch of the data. The same Online
Linear Discriminant Classifier (O-LDC) was applied for
all 6 change-detection methods. The results demonstrate
the potential of the two control charts. As a by-product,
these methods come with ready made ARL analyses
and closed form solutions for specific types of change,
e.g., abrupt and linear. This will enable theoretical com-
parisons between different detection methods prior to
embedding one of them into an online classifier.

We should be cautious and not read too much in the
dominance of SPRT that came as the result of the exper-
iments. First, the change introduced by swapping labels
was so drastic, that all methods were likely to detect it
within one batch. Being an instance-based method, SPRT
was capable of detecting a change earlier than a full
batch size. Second, the success of SPRT and Shewhart
can be attributed, to some extent, to the serendipitous
choice of a window resizing heuristic and parameter
values. This comes to highlight the importance of all
the choices that accompany the design of any online
classification system. Third, this study looks at abrupt
changes while there are many other possible change
simulation scenarios.

Our future investigation plans include analysis and
design of ensembles of control chart detectors. It would
be interesting to derive expressions for ∆ (number of

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 11

observations to detection) for Shewhart and SPRT when
the thresholds are not fixed in advance but depend on
estimates from the streaming data.

APPENDIX

Analysis of the WRABD

Here we derive an expression for the detection time
∆WRABD of the WRABD algorithm (Figure 1). To be able
to do so, consider the following scenario. Assume that
the data has been coming from a stationary distribution,
long enough so that the classifier does not benefit from
expanding the training data window any further. Denote
by p the true error rate of the classifier. At some time
point, a rapid change of the underlying distribution
occurs so that the error rate increases to p∗ on the new
distribution. To ease the analysis we shall assume that
the change occurs after batch Bc−1 and before batch Bc.
Let td be the batch number at which a change is detected.

The previous errors ec−m, . . . , ec−1 needed for cal-
culating p̄ are estimated using the respective current
classifiers at batches c − m, . . . , c − 1. As we assumed
that the classifier model is already fully trained, the
variability in p̄ will only be due to the different testing
batches. Since they all come from the distribution before
the change, the total number of errors in m batches is
a binomial random variable with parameters mN and
p. For large enough mN , the average error across the
past m batches can be approximated with a normal
random variable X with mean p and standard deviation
σ =

√

p(1 − p)/(mN).
The number of errors ec in batch Bc, coming from

the new distribution, is itself a binomial random vari-
able. Provided that p∗N ≥ 5 and (1 − p∗)N ≥ 5, the
error rate can be approximated by a normal random
variable Y with mean p∗ and standard deviation σ∗ =
√

p∗(1 − p∗)/N . Form a new random variable ζ = Y −X .
It will have normal distribution with mean p∗ − p and
standard deviation

√

(σ∗)2 + (σ)2.
The detection inequality in WRABD can be reformat-

ted as ec − p̄ > f σ̄
m

. Note that σ̄
m

is an estimate of σ. To
make the analysis feasible, we assume that σ is given
and fixed, so the detection threshold does not depend
on data. The detection inequality becomes ec − p̄ > fσ.
Restrictive, as it may be, without this assumption the
the analysis becomes more complicated, and is hardly
justified for the purposes of the current study.

The probability that the change is detected within a
single batch (Bc) of size N is

Pd(0) = Pr(ζ > fσ)

= 1 − Pr(ζ ≤ fσ)

= 1 − Φ

(

fσ − p∗ + p
√

(σ∗)2 + (σ)2

)

,

where Φ is the cumulative distribution function for the
normal distribution.

The probability Pd(k) that the change is detected at
batch Bc+k, where 1 ≤ k < m, needs a further elabora-
tion. In this case m−k batches from the old distribution
and k batches from the new distribution will be used
in the calculation of p̄. The number of errors in the m
batches will be a sum of two binomial variables with
distributions B((m − k)N, p) and B(kN, p∗). Taking the
normal approximations of both, the error rate variable
Y , associated with p̄, will be a normal random variable
with mean m−k

m
p + k

m
p∗ and standard deviation

σ =

√

(m − k)p(1 − p) + kp∗(1 − p∗)

m2N
.

Recall the assumption in this scenario: adding new
training data from the original distribution will not
change the classifier. However, until detection occurs,
the training data will be augmented with batches from
the new distribution. We need to assume in addition
that adding batches from the new distribution is not
going to “dilute” too much the training set and disturb
the learned classifier. In other words, the classifier is
supposed to have the same probability of error p∗ on
all unseen batches coming from the new distribution.

Using again ζ = Y −X , the probability that the change
occurring at c is detected at batch Bc+k, where 1 < k < m
is

Pd(k) = Pr(ζ > fσ) = 1 − Φ

(

fσ + m−k
m

(p − p∗)
√

(σ∗)2 + (σ)2

)

.

For any k ≥ m, we will have a static distribution with
probability of error p∗. Then the mean of ζ is zero, and
σ =

√

p∗(1 − p∗)/mN = σ∗/
√

m. Hence

Pd(m) = Pr(ζ > fσ) = 1 − Φ

(

f

√

m

m + 1

)

Regarding Pd(m) as probability of “success”, the number
of batches to detection is a random variable with a geo-
metric distribution with parameter Pd(m) and expected
value 1/Pd(m) (batches). Therefore, if we fall in the “non-
detection zone” where k ≥ m, then we can expect

∆non−detection
WRABD = N

(

(m − 1) +
1

Pd(m)

)

observations to detecting a change.
To find the total number of observations to detecting

a change for WRABD, we create a discrete random
variable taking values in the set V = {0, 1, 2, . . . ,m− 1}.
These values correspond to the possible number of
batches to detection starting with Bc. The probability
mass function is

P (i) = Pr(detection in batch Bc+i)

=
1

Z
Pd(i)

i−1
∏

k=0

(1 − Pd(k)), 1 ≤ i ≤ m − 1,

where Z is a normalising constant which amounts to
the probability of detecting a change within m batches

12 TECHNICAL REPORT BCS-TR-001-2009

including Bc.

Z = 1 −
m−1
∏

k=0

(1 − Pd(k)).

For i = 0, P (0) = Pd(0). The expected number of
observation according to this random variable is

∆detection
WRABD = N

(

1 +
1

Z

m−1
∑

i=1

i Pd(i)

i−1
∏

k=0

(1 − Pd(k))

)

.

The 1 in the brackets reflects the fact that Bc needs to
be counted as well. The total number of observation to
change is

∆WRABD = Z∆detection
WRABD + (1 − Z)∆non−detection

WRABD

= N

(

Z +

m−1
∑

i=1

i Pd(i)

i−1
∏

k=0

(1 − Pd(k))

)

+ (1 − Z)N

(

(m − 1) +
1

Pd(m)

)

Continuity correction. Due to the discrete nature of
the binomial distribution the theoretical calculation of
∆ using normal distribution is inaccurate, especially for
small N . Consider the following example. Suppose that
we are investigating the case where batches of size N
are taken and the number of errors is compared to a
threshold he. Alarm is triggered if the number of errors
within the batch strictly exceeds he. Let N = 10 and
p = 0.2. According to the WRABD detection step (with
factor f = 3),

he =
⌊

N ×
(

p + 3
√

p(1 − p)/N
)⌋

= ⌊10×0.5795⌋ = 5 errors.

This means that an alarm will be raised if strictly more
than 5 observations from the batch of 10 are misclassi-
fied. The 3σ-confidence interval, assuming normal dis-
tribution, gives probability of false alarm (type I error)
α = 0.00135. The number of observations to alarm, pre-
dicted using the normal approximation, is N/α ≈ 7408.
Using the binomial distribution, the probability of type
I error will be αB = 1−B(he, N, p) ≈ 0.00637, where B is
the cumulative binomial distribution function. Hence the
true number of observations to alarm is N/αB ≈ 1570.

To correct for the error in the theoretical prediction,
we adjust the factor for the confidence interval, f , and
still use the normal approximation of the binomial dis-
tribution. The adjusted factor f ′ is

f ′ = Φ−1(1 − αB) = Φ−1(B(he, N, p)). (9)

where
he =

⌊

N ×
(

p + f
√

p(1 − p)/N
)⌋

. (10)

For the example above, f ′ = Φ−1(B(5, 10, 0.2)) =
2.4910. With this f ′, the adjusted type I error is α′ = αB ,
and the predicted number of observations to detection
is the correct one.

Consider the more general case where we have a
binomial random variable X with parameters N and p∗

and a threshold he calculated through (10) for a fixed
p. The adjusted factor, f ′′, is obtained in the following
way. The probability for X > he is 1 − B(he, N, p∗).
Using the normal approximation, Pr(X > he) = 1 −
Φ((p + f ′′σ − p∗)/σ∗), where σ and σ∗ are the respective
standard deviations. As both expressions amount to the
same probability, Pr(X > he), we can take B(he, N, p∗) =
Φ((p + f ′′σ − p∗)/σ∗) and solve for f ′′

f ′′ =
1

σ
(σ∗Φ−1(B(he, N, p∗)) + p∗ − p). (11)

Notice that f ′′ reduces to f ′ for p∗ = p.

We carried out simulation runs to illustrate the match
between the empirical and the theoretical ∆WRABD.
With the continuity correction in place, Figure 8 shows
∆WRABD as a function of p∗ along with two simulation
curves. The parameter values were: batch size N = 10
and N = 50, past batches m = 5, confidence interval
factor f = 3 and fixed p = 0.2. Each of the empirical
curves is the average of 100 simulation runs. The 95%
confidence intervals are also shown.

∆WRABD

0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

250

300

Theoretical (N = 10)
Obtained (N = 10)
Theoretical (N = 50)
Obtained (N = 50)

offset δ

Fig. 8. Number of observations to detection of change for
the WRABD algorithm.

ACKNOWLEDGEMENTS

I am grateful to Chris Whitaker and Juan Rodrı́guez
for the insightful discussions and for pointing to me
crucial reference sources which fuelled the inspiration
for this study. This work was sponsored by EPSRC grant
#EP/D04040X/1.

REFERENCES

[1] C. A. Acosta-Mejia. Improved p charts to monitor process quality.
IIE Transactions, 31:509–516, 1999.

[2] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning
algorithms. Machine Learning, 6:37–66, 1991.

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 13

[3] M. Baena-Garcı́a, J. Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà,
and R. Morales-Bueno. Early drift detection method. In Fourth
International Workshop on Knowledge Discovery from Data Streams,
pages 77–86, 2006.

[4] A. F. Bissel. The performance of control charts and cusums under
linear trend. Applied Statistics, 33:145–151, 1984.

[5] M.M Black and R.J. Hickey. Maintaining the performance of a
learned classifier under concept drift. Intelligent Data Analysis,
3(6):453–474, 1999.

[6] C. L. Blake and C. J. Merz. UCI repository of machine
learning databases, 1998. http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

[7] A. Blum. Empirical support for Winnow and weighted-majority
based algorithms: results on a calendar scheduling domain. In
Proc. 12th International Conference on Machine Learning, pages 64–
72, San Francisco, CA., 1995. Morgan Kaufmann.

[8] D. Brook and D.A. Evans. An approach to the probability
distribution of cusum run length. Biometrika, 59:539–549, 1972.

[9] S. J. Delany, P. Cunningham, and A. Tsymbal. A comparison of
ensemble and case-based maintenance techniques for handling
concept drift in spam filtering. Technical Report TCD-CS-2005-
19, Trinity College Dublin, 2005.

[10] W. Fan, S. J. Stolfo, and J. Zhang. Application of adaboost for
distributed, scalable and on-line learning. In Proc KDD-99, San
Diego, CA, 1999. ACM Press.

[11] G. Forman. Tackling concept drift by temporal inductive transfer.
Technical Report HPL-2006-20(R.1), HP Laboratories Palo Alto,
June 2006.

[12] J. C. Fu, G. Shmueli, and Y. M. Chang. A unified Markov chain
approach for computing the run length distribution in control
charts with simple or compound rules. Statistics & Probability
Letters, 65:457–466, 2003.

[13] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with
drift detection. In Advances in Artificial Intelligence - SBIA 2004,
17th Brazilian Symposium on Artificial Intelligence, volume 3171 of
Lecture Notes in Computer Science, pages 286–295. Springer Verlag,
2004.

[14] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining data streams
under block evolution. ACM SIGKDD Explorations Newsletter, 3:1–
10, 2002.

[15] D.J. Hand. Classifier technology and the illusion of progress (with
discussion). Statistical Science, 21:1–34, 2006.

[16] M. Harries and K. Horn. Detecting concept drift in financial
time series prediction using symbolic machine learning. In Eighth
Australian Joint Conference on Artificial Intelligence, pages 91–98,
Singapore, 1995. World Scientific Publishing.

[17] R.J. Hickey and M. M. Black. Refined time stamps for concept drift
detection during mining for classification rules. In Proceedings of
the International Workshop on Temporal, Spatial and Spatio-Temporal
Data Mining (TSDM2000), Lecture Notes in Artificial Intelligence,
volume 2007, pages 20–30. Springer-Verlag: Berlin, 2000.

[18] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing
data streams. In In Proc. 7th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 97–106. ACM
Press, 2001.

[19] R. Klinkenberg. Using labeled and unlabeled data to learn drifting
concepts. In Workshop notes of the IJCAI-01 Workshop on Learning
from Temporal and Spatial Data, pages 16–24, Menlo Park, CA, USA,
2001. IJCAI, AAAI Press.

[20] R. Klinkenberg and T. Joachims. Detecting concept drift with
support vector machines. In Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning (ICML), pages 487–494, San
Francisco, CA, USA, 2000. Morgan Kaufmann.

[21] R. Klinkenberg and I. Renz. Adaptive information filtering:
Learning in the presence of concept drifts. In AAAI-98/ICML-98
workshop Learning for Text Categorization, Menlo Park,CA, 1998.

[22] J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: A
new ensemble method for tracking concept drift. In Proc 3rd
International IEEE Conference on Data Mining, pages 123–130, Los
Alamitos, CA, 2003. IEEE Press.

[23] L. I. Kuncheva. Combining Pattern Classifiers. Methods and Algo-
rithms. John Wiley and Sons, N.Y., 2004.

[24] M.M. Lazarescu and S. Venkatesh. Using selective memory to
track concept drift effectively. In Intelligent Systems and Control,
volume 388, Salzburg, Austria, 2003. ACTA Press.

[25] N. Littlestone. Learning quickly when irrelevant attributes
abound: A new linear threshold algorithm. Machine Learning,
2:285–318, 1988.

[26] M. Markou and S. Singh. Novelty detection: A review, Part I:
Statistical approaches. Signal Processing, 83(12):2481– 2521, 2003.

[27] C. Mesterharm. Tracking linear-threshold concepts with winnow.
Journal of Machine Learning Research, 4:819–838, 2003.

[28] E. S. Page. Continuous inspection schemes. Biometrika, 41:100–114,
1954.

[29] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar. Learn++: An
incremental learning algorithm for supervised neural networks.
IEEE Transactions on Systems, Man and Cybernetics, 31(4):497–508,
2001.

[30] M. R. Reynolds Jr and Z. G. Stoumbos. The SPRT chart for
monitoring a proportion. IIE Transactions, 30:545–561, 1998.

[31] M. R. Reynolds Jr and Z. G. Stoumbos. A general approach
to modeling CUSUM charts for a proportion. IIE Transactions,
32:515–535, 2000.

[32] M. Salganicoff. Density-adaptive learning and forgetting. In
Proceedings of the 10th International Conference on Machine Learning,
pages 276–283, 1993.

[33] K. O. Stanley. Learning concept drift with a committee of decision
trees. Technical Report AI-03-302, Computer Science Department,
University of Texas-Austin., 2003.

[34] S. H. Steiner. Grouped data exponentially weighted moving
average control charts. Applied Statistics, 47:203–216, 1998.

[35] W. N. Street and Y. S. Kim. A streaming ensemble algorithm
(SEA) for large-scale classification. In Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 377–382. ACM Press, 2001.

[36] A. Tsymbal. The problem of concept drift: definitions and related
work. Technical Report TCD-CS-2004-15, Trinity College Dublin,
April 2004.

[37] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept drifting
data streams using ensemble classifiers. In Proceedings of the 9th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 226–235. ACM Press, 2003.

[38] G. Widmer. Tracking context changes through meta-learning.
Machine Learning, 27(3):259–286, 1997.

[39] G. Widmer and M. Kubat. Learning in the presence of concept
drift and hidden contexts. Machine Learning, 23:69–101, 1996.

TECHNICAL REPORT BCS-TR-001-2009 1

Using Control Charts for Detecting Concept
Change in Streaming Data

Ludmila I. Kuncheva Member, IEEE

✦

Abstract—We address adaptive online classification in the presence
of concept change. An overview of the machine learning approaches
reveals a deficit of methods for explicit detection of change when the
only information is the classification error of the streaming data. We look
to borrow answers from the longstanding research in monitoring process
quality by using control charts. Four methods for change detection are
detailed and compared in the paper: two from the machine learning
literature and two control charts (Shewhart and Sequential Probability
Ratio Test (SPRT)). Control charts would only signal a change. To exam-
ine empirically their effect on the classification accuracy, the Shewhart
and SPRT methods were equipped with a window resizing heuristic. We
chose to grow the window until a change has been detected, and shrink
it to a batch size upon detection. Experiments with 28 real data sets
were carried out, where change was simulated by swapping class labels.
Paired t-test on the classification error and paired Wilcoxon signed rank
test picked SPRT as the best change detection method.

Index Terms—Concept drift, Control charts, Changing Environments,
Online classifiers

1 INTRODUCTION

THE CLAIM that classifier technology has made sig-
nificant progress in the past few decades has been

recently challenged [15]. One of the arguments in Hand’s
paper is that real-life problems change with time, while
most of the pattern recognition and machine learning
research is focused on inventing ever more sophisticated
tools for solving static problems. However, along with
the strong tendency towards perfecting static models,
there does exist a rich body of literature related to
changing environments (most often termed “concept
drift”). Part of the problem is that this literature is
fairly dispersed, and related ideas are being developed
independently under different terminologies. Our study
was inspired by the similarity of the task of detect-
ing a concept change (machine learning) and that of
monitoring process quality (industrial engineering). The
latter can offer a spectrum of change detection methods
that have been the subject of substantial theoretical and
empirical research over the past 50 years.

When a classifier is faced with changes in the under-
lying problem, it needs a mechanism to adapt to these
changes. The first question here is whether an observed

• L. I. Kuncheva is with the School of Computer Science, Bangor University,
Bangor Gwynedd LL57 1UT, UK.
E-mail: l.i.kuncheva@bangor.ac.uk

variation is noise or a true change that requires some
form of action. Even if the classifier is being adapted
with each new observation, there is a need to detect a
change and subsequently “forget” or “unlearn” previous
knowledge. The easiest solution is to keep a window
over the streaming data and re-train the classifier on the
most recent window. The window size is crucial because
it determines the flexibility of the system, which needs to
match the style and pace of the changes. If the window
is too small, the classifier will tend to learn all the noise
in the data. Conversely, large windows will make the
system inert and insensitive to changes. To alleviate the
severity of this plasticity-stability dilemma, a window
of variable size can be applied [39]. Detecting a change
will shrink the window while a stable run will increase
it to a pre-specified maximum size. Managing a variable
window requires an explicit change detection.

In our scenario the classifier receives streaming data
and predicts a label for each incoming observation.
The true label becomes available immediately after the
prediction, so the classifier “knows” whether it has been
right or wrong. Unlikely as it sounds, this assump-
tion underpins almost all existing work in classification
in changing environments (concept drift, concept shift,
population drift) as well as incremental learning and
classification of streaming data. Although labels may not
be instantly available in many real life problems, scenar-
ios like this exist. For example, in a betting exercise, the
classification (prediction) is ‘win’ or ‘loss’. After the bets
are placed and the race is over, the outcome is available
straight away.

Suppose that the only parameter to be used in the
change detection is this correct/wrong outcome. Thus
the change detection method receives as input a binary
string, and raises an alarm if a “sizable” increase in
the error rate has occurred. This paper proposes to use
control charts (Shewhart and the Sequential Probabil-
ity Ratio Test (SPRT)) to serve as change detectors in
online classifiers. The rest of the paper is organised as
follows. Section 2 surveys the literature on classification
in changing environments in the context of change de-
tection. As a result, two methods, called here Window
Resize Algorithm for Batch Data (WRABD) [21] and
Warning Window Algorithm for Instance Data (WWAID)
[13], were found and further analysed. Control charts

2 TECHNICAL REPORT BCS-TR-001-2009

are introduced in Section 3. Section 4 presents a brief
simulation-based comparison between the change detec-
tion methods. Experimental results on 28 real data sets
with artificially introduced concept change are given in
Section 5. Section 6 contains our final remarks.

2 CHANGE DETECTION: RELATED WORKS

The approaches to handling concept drift can be cate-
gorised with respect to

1) Data chunks. Depending on the organisation of
the input data, we can classify the approaches
into instance-based (streaming data) and batch-based
(streaming batches) [36]. The choice of approach
depends largely upon the way and the speed
the data is collected, and the time framework for
making a decision/prediction. Streaming data can
be converted into streaming batches. The reverse
is also possible but batch data usually comes in
massive quantities, and instance-based processing
may be too time-consuming to be applicable.

2) Information used. Another possible division stems
from the type of information that is used to detect
a change and update the classifier model.

• Probability distributions. Past data is “forgotten”
if the new distribution does not accommodate
it well enough [9], [14], [26], [32].

• Feature relevance. New distributions may ren-
der irrelevant some features (or combinations
of attribute values) that were relevant in the
past [7], [11], [16], [38]. Keeping track on the
best combination of predictive features (clues)
makes it possible to train a relevant classifier
for the most recent data distribution.

• Model complexity. Some classifier models are
sensitive to change in the data distribution. For
example, explosion of the number of rules in
rule-based classifiers or the number of support
vectors in SVM classifiers may signify a con-
cept drift.

• Time stamp. The time an instance or a batch has
been observed can be taken as input variable
in the classifier [5], [17].

• Classification accuracy. This is the most widely
used criterion for implicit or explicit change
detection. Included in this group are most en-
semble methods for changing environments:
Winnow variants [25], [27], AdaBoost variants
[10], [29], “replace-the-loser” approaches [22],
[23], [33], [35], [37]. Many single classifier mod-
els also evaluate the accuracy either to select
the window size for the next classifier [3], [13],
[19]–[21], [24] or to update the current model
[2], [18], [39].

3) Change detection mode. The approaches can be
split into explicit (detecting a change and acting
upon it, for example by changing the window size)
and implicit (using a forgetting heuristic regardless

of whether or not change is suspected, for example,
modifying the weights of the ensemble members or
selecting instances based on their recent accuracy).

4) Classifier-specific versus classifier-free. In the
classifier-specific case, the forgetting mechanism
can only be applied to a chosen and fixed classifier
model [2], [7] or classifier ensemble [29]. In the
classifier-free case any classifier can be used
because the change detection and the window
update depend only on the accuracy of the
classification decision, and not on the model [13],
[21].

This study is focused on a general set-up that operates
with minimal amount of information. We assume that
the only information we have access to is a streaming
data of zeros and ones, indicating whether the prediction
of the class label for the respective observation has been
correct or wrong. Using the classification of approaches
offered above, the methods we are interested in comply
with the following 4-point description:

◦ Data chunks = any (instance-based or batch-based);
◦ Information used = classification accuracy;
◦ Change detection mode = explicit;
◦ Classifier-specific versus classifier-free = classifier-free.

The following studies were found to be the closest
match:

• Klinkenberg and Renz [21] propose a method for
determining the window size. It uses past batches of
data to estimate changes in the error. A data window
is maintained, on which the current classifier is trained,
called here the training window. One data batch is
examined at a time. Let ec be the error rate of the
current classifier estimated on the current batch. If ec

exceeds a given threshold, then a change is signalled.
A further comparison with the error on the previous
batch, ec−1, guides the amount by which the training
window is resized. If the new error is much larger, i.e.,
ec > 1 − β(1 − ec−1), then a rapid change is suspected
(concept shift), and the training window is reduced to
contain only the latest batch. If the error on the current
batch is not much larger, then the detected change
is gradual (concept drift) and the training window is
reduced by a factor γ. If change has not been detected
at all, the current batch is added to the training window.
The threshold for the detection is determined using the
errors of the m previous data batches, which we call the
detection window. Upon change detection, we collapse
the detection window. No further change detection is
allowed until the detection window reaches the size of
m batches. The method is named here Window Resize
Algorithm for Batch Data (WRABD), and is detailed in
Figure 1.

The algorithm is designed for information filtering
where a stream of documents have to be classified as
relevant or non-relevant. Along with the classification

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 3

WINDOW RESIZE ALGORITHM FOR BATCH DATA (WRABD)

1) Choose the parameter values1:

N , the batch size;

m, the number of batches for evaluating the old accuracy (detection window, m = 10);

f , a confidence interval parameter (f = 5);

β, a factor for assessing the type of the change – gradual or abrupt (β = 0.5);

γ, the window shrinking factor (γ = 0.5).

2) Run a warm-up stage by collecting m batches that will form the initial training window and detection window.

3) For c = m + 1, m + 2, ...

a) Train the chosen classifier model with the current training window and estimate its error ec on the current

batch.

b) If change has not been detected in the past m steps, then calculate the old error, p̄, as the error averaged across

the pervious m batches, p̄ = 1

m
(ec−m + . . . + ec−1). Estimate its standard deviation σ̄.

i) If ec > p̄ + f σ̄√
m

and ec > 1 − β(1 − ec−1), then a rapid change is suspected (concept shift). Take the last

batch as the new training window. Record detection at step c (this will collapse the detection window).

ii) Else, if ec > p̄ + f σ̄√
m

but ec ≤ 1 − β(1 − ec−1), the suspected change is considered to be gradual (concept

drift). Reduce the training window by a factor of γ (or use the last batch if the training window becomes

smaller than N). Record detection at step c.

iii) Else (no change is detected because ec ≤ p̄ + f σ̄√
m

), add the current batch to the training window.

c) Else (change has been detected within the past m steps) add the current batch to the training window.

1All parameter values are quoted from [21]. These are said to be arbitrary and not a result of an optimisation.

Fig. 1. Klinkenberg and Renz [21] window resize algorithm for batch data.

error, the authors use two more performance metrics:
Recall (the probability that the classifier recognises a
relevant document as relevant) and Precision (the prob-
ability that the document is actually relevant given that
it was classified as relevant). The window is modified if
any one of the three measures signals a change.

• The drift detection method proposed by Gama et al.
[13] keeps track on the probability of error for streaming
instances. The training window of instances grows until
a change is detected. When the error is found to exceed
a certain threshold, the system enters a warning mode
and stores the time, tw, of the corresponding instance.
If the error drops below the threshold again, the warn-
ing mode is cancelled. However, if the error exceeds a
second (higher) threshold while in the warning mode, a
change is recorded. The new training window is taken
to be the streaming data that came after time tw. The
classifier is re-trained and the warning and detection
thresholds are re-set. Figure 2 shows the details of the
algorithm (with some improvisations for the parts that
were not specified in the original publication).

A modification of this algorithm due to Baena-Garcı́a
et al. [3] is shown to be better than the original algorithm
for some data sets and worse for others. The authors
take a different metric in the place of the error rate – the
distance between two consecutive errors. The window
resize procedure is governed by the same heuristics.
There is no theoretical or intuitive justification as to why
the new metric will be better than taking just the error

rate. For i.i.d. binary sequences with error rate p, the
distance between two consecutive errors is a random
variable with geometric distribution whose expected
value is 1/p. It does not make much difference whether
we evaluate p or 1/p and compare the value with a
threshold in order to detect a change. It can be argued
that the reported differences in the performance of this
method and WWAID are largely due to the different uses
and values of the warning and detection thresholds.

Each of the algorithms comes with procedures for
both change detection and modifying the data window.
The detection parts can be “cut out” and analysed with
respect to their detection efficiency, similar to the way
control charts are compared to one another. Change
detection algorithms can be compared on the number
of observations between the detection and the occur-
rence of the change, ∆ =< time of detection > − <

time of occurrence > (provided the observations come one
at a time).

The derivation of the expression for ∆WRABD is given
in the appendix. For WWAID, we faced a problem
because the of the choice of the detection threshold
pmin + smin. Simulation runs showed that the value of
this threshold is established early on in the process when
both p̂ and ŝ vary substantially. This sets up an arbitrary
reference value which leads to spurious detection pat-
terns. This observation does not suggest that this method
is not useful in practice; it only prevents us from laying
out assumptions and finding a closed form expression

4 TECHNICAL REPORT BCS-TR-001-2009

DRIFT DETECTION - WARNING WINDOW ALGORITHM FOR INSTANCE DATA (WWAID)

1) Choose the parameter values: Tw the factor for the warning threshold (Tw = 2), Td the factor for the detection

threshold (Td = 3), w0, the warm-up window size (w0 = 30). Initialise the minimum classification error pmin = ∞

and the corresponding standard deviation smin = ∞. Set the warning zone flag, fw, to false.

2) At time t (t > w0), classify the new instance xt using the classifier trained on the current window of size wt. Update

the error rate over the current window. Let p̂ be the updated error rate and ŝ =
√

p̂(1 − p̂)/wt be the standard

deviation.

3) If p̂ + ŝ < pmin + smin, then update the minimum error by pmin = p̂ and smin = ŝ.

4) If (p̂ + ŝ > pmin + Twsmin) and fw = false, then switch the warning zone flag fw = true and set up the warning time

tw = t.

5) If (p̂ + ŝ < pmin + Twsmin) and fw = true, then cancel the warning zone: fw = false, tw = ∞.

6) If (p̂ + ŝ > pmin + Tdsmin), then change has been detected. Take as the new window all the observations since tw

(size wt+1 = t − tw + 1), set pmin = ∞, smin = ∞, fw = false, and tw = ∞.∗ Otherwise, update the window by

adding xt to it (size wt+1 = wt + 1).
∗It is not explicitly specified by Gama et al. [13] what action should be taken if the warning window is too small or if there has not been a warning zone

at all. A possible course of action would be to have a fixed window of minimum size (w0) for w0 forthcoming iterations.

Fig. 2. Gama et al. [13] warning window algorithm for streaming data

for ∆WWAID.
We carry forward WRABD and WWAID because they

were the only two change detection algorithms we
found, which comply with the scenario defined by the
4-point description in Section 2.

3 DETECTING A CHANGE USING CONTROL
CHARTS

3.1 Shewhart control chart

Control charts have long been used for monitoring pro-
cess quality. Consider a streaming line of objects with
probability p of an object being defective. Samples of
N objects (batches) are taken for inspection at regular
intervals. The number of defective objects is counted and
an estimate p̂ is plotted on the chart. It is assumed that
the true value of p is known (from product specification,
trading standards, etc.) Using a threshold of fσ, where
σ =

√

p(1 − p)/N , a change is detected if p̂ > p+fσ. This
model is known as Shewhart control chart, or also p-chart
when binary data is being monitored. The typical value
of f is 3, but many other alternative and compound
criteria have been used1.

The expected number of batches to detection is called
the Average Run Length (ARL). Here we are interested
in the number of observations to detection, ∆Shewhart.
Suppose that an abrupt change has occurred and the
new probability of an item being defective is p∗. The
number of errors (defective items) within a batch is a
binomial random variable with probability of success
p∗, and number of trials N . Given that N is sufficiently
large, we can approximate the error rate with a normal
random variable with mean p∗ and standard deviation
σ∗ =

√

p∗(1 − p∗)/N . Assuming that the change occurs

1. http://en.wikipedia.org/wiki/Control chart

before the batch is taken for inspection, the probability
of detecting a change within a single batch is

Pd = 1 − Pr(p̂ ≤ p + fσ)

= 1 − Φ

(

p + f
√

p(1 − p)/N − p∗
√

p∗(1 − p∗)/N

)

.

The Average Run Length is a random viable with
geometric distribution, whose expected value is 1/Pd.
Therefore the number of observations to detection is

∆Shewhart =
N

Pd

. (1)

If the change occurs within batch Bc, so that K obser-
vations come from the “old” distribution (p) and the
next N − K come from the “new” distribution (p∗), the
number of observations to detection can be represented
as

∆Shewhart = (N −K)+(1−Pr(detected in Bc))
N

Pd

. (2)

The number of defective objects in batch Bc is a sum
of two binomial random variables with distributions
B(K, p) and B(N − K, p∗), respectively. Approximating
each with a normal random variables (conditions permit-
ting), the proportion of errors in Bc can be approximated
with a normal random variable with mean

K

N
p +

N − K

N
p∗

and standard deviation
1

N

√

Kp(1 − p) + (N − K)p∗(1 − p∗)

Therefore

Pr(detected in Bc) = 1 − Pr(p̂ ≤ p + fσ)

= 1 − Φ

(

(N − K)(p − p∗) + f
√

p(1 − p)N
√

Kp(1 − p) + (N − K)p∗(1 − p∗)

)

.

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 5

Substituting in (2), we obtain the number of observa-
tion to change, ∆Shewhart. Note that (1) is subsumed by
(2) for K = 0, as in this case Pr(detected in Bc) = Pd.

Avoiding the normal approximation altogether, the
predicted number of observations to detection can be
expressed as

∆Shewhart = (N − K) +
N

1 − B(he, N, p)
×

he
∑

j=0

j
∑

i=0

b(i,K, p)b(j − i,N − K, p∗) (3)

where b(r,M, q) is the binomial probability mass func-
tion for a distribution with parameters M and q. The
threshold he is the number of errors beyond which a
change is detected. he and the factor correction calcu-
lated as in (10) and (11) respectively ensure that the
normal approximations of Pd and Pr(detected in Bc),
when substituted in (2), lead to the same answer as (3).

Shewhart chart is both simple and elegant, requiring
only two parameters, N and f , as p can be estimated
from past observations. Figure 3 details the Shewhart
algorithm in the notation of change detection.

SHEWHART

1) Choose the parameter values:

f the factor for the confidence interval (f = 3);

N , the batch size.

2) At time c, evaluate the error ec on the current batch

of data Bc.

3) Declare that change has been found if ec exceeds

the f -sigma limit, ec > p + fσ.

Fig. 3. Shewhart change detection algorithm for stream-

ing batches of data

Adding the following 3 extra detection criteria to the
original 3-sigma rule makes up a compound detection
rule known as ‘Western Electric rules’: (i) Two out of
three consecutive points exceed the 2-sigma limit; (ii)
Four out of five consecutive points exceed the 1-sigma
limit; (iii) Nine consecutive points are above p. Theoreti-
cal analysis of compound detection rules is not straight-
forward. The most appealing approach is to describe
the process as an absorbing Markov chain and evaluate
the Average Run Length as the number of steps to
absorption [1], [4], [8], [12], [34]. The preferred empirical
approach is simulation with various types of change.

3.2 CUSUM and SPRT charts

CUmulative SUM (CUSUM) charts are deemed to be
more sensitive to gradual changes than Shewhart charts
[28], [31]. There are two variants called “Binomial” and
“Bernoulli” CUSUM charts [31]. The idea is to keep
the cumulative sum of the errors and apply a change-
detection test on that. In the Binomial version, data

comes in batches. Let {xt,1, xt,2, . . . , xt,N} be the binary
sequence for batch Bt, where xt,k = 1 means that object
k from batch Bt has been misclassified and xt,k = 0 will
indicate a correct class label. Starting with a sum S0 = 0,
the iterative formula for calculating the control statistic is
[31]. (Reynolds and Stoumbos [31] point out that there
is a slight difference in the calculation of this statistic
compared to the mainstream literature. The change has
been adopted for convenience of the analyses, and is said
to have no practical effect on the method.)

St = max{0, St−1} +

(

N
∑

i=1

xt,i − Nγ

)

, (4)

where

γ = r1/r2, r1 = − ln
1 − p∗

1 − p
, r2 = ln

p∗(1 − p)

p(1 − p∗)
. (5)

St is compared with a control limit h, and if St > h,
then change is signalled. In a Bernoulli CUSUM chart,
the observations come one at a time (streaming instances
approach). The control statistic is the same as (4) with
N = 1. The detection rule is also the same. The value of
the control limit, h, is determined in regard to all other
parameters of the detection scheme. In process control
it is important to choose ∆CUSUM and derive h from it
rather than the other way around.

Reynolds and Stoumbos [30] provide a closed form
approximation of the relationship between the design
parameters and the control limits for another detection
scheme based on Wald’s Sequential Probability Ratio Test
(SPRT). SPRT is perceived to be even more successful
than CUSUM charts. The observations come one at a
time and the cumulative sum of errors at step t is com-
pared with a reference value γt. If X denotes the error
rate, the statistical test being carried out is H0 : X = p
against H1 : X = p∗. If the difference between the
cumulative error count and the reference value is greater
than a control limit h, then change is detected and H1 is
accepted. If, on the other hand, this difference is smaller
than another threshold g, then H0 is accepted. If H0 is
accepted, a new SPRT is started. In our scenario, the new
SPRT is started immediately after the decision. This is
repeated until a change is detected. Figure 4 shows the
SPRT change detection method.

The average number of observations to signal is

∆SPRT = Expected number of SPRT to detection ×

Expected length of SPRT to decision

Suppose that the change from p to p∗ occurs before the
first SPRT is started. Let Pd = 1 − β be the probability
that a single SPRT detects a change (accepts H1) when
the change is present. Then

Expected number of SPRT to detection =
1

1 − β
. (6)

Reynolds and Stoumbos [30] also provide approxima-
tions for the average length of an SPRT for both cases,

6 TECHNICAL REPORT BCS-TR-001-2009

SPRT

1) Choose the parameter values: α, the probability of type I error (reject H0 when X = p) and β, the probability of type

II error (accept H0 when X = p∗). Calculate r1, r2 and γ from (5), and the limits h and g using the approximations

h =
1

r2

ln

(

1 − β

α

)

−
(1 − 2p)

3
, g =

1

r2

ln

(

β

1 − α

)

.

2) At time t, start an SPRT setting its counter to j = 1. Let xt,j be the jth (0/1) observation coming after SPRT was

started.

• If
∑j

i=1
xt,j − jγ ≤ g, accept H0, set j = 1, and start a new SPRT.

• else, if
∑j

i=1
xt,j − jγ ≥ h, accept H1, declare a change and STOP.

• else, set j = j + 1 and continue the current SPRT.

Fig. 4. SPRT change detection algorithm for streaming data [30]

when X = p and when X = p∗. Let L(ζ) be the
expected length of an SPRT process until decision is
made either way, given that observations come with
probability X = ζ. Then

L(p∗) ≈
(1 − β) ln 1−β

α
+ β ln β

1−α

r2p∗ − r1

(7)

and

L(p) ≈
α ln 1−β

α
+ (1 − α) ln β

1−α

r2p − r1

(8)

From (6) and (7),

∆SPRT =
L(p∗)

1 − β

The scenario where a true change is being detected
is called ‘out of control’ whereas a false detection sce-
nario is called ‘in control’. This terminology comes from
process monitoring where ‘no change’ means that the
process is in control and an alarm should be raised if
the measured quantity slips out of control.

4 COMPARISONS BETWEEN THE CHANGE DE-
TECTION METHODS

Figure 5 shows the number of observations to detection
(∆) for WRABD, Shewhart and SPRT for two batch sizes,
N = 10 and N = 50. 100 runs were carried out where
a random i.i.d. binary sequence was generated for each
run and each method. The value of p∗ was varied as
p∗ = p + offset, where ‘offset’ took all the values in
{0.05, 0.06, . . . , 0.25}. The observations were generated
and fed to the detection method one at a time, and the
process was stopped as soon as change was detected.
The number of observations to detection was stored for
each run. The detection window length for WRABD was
m = 5 batches and the detection factor was f = 3. The
values of all the other parameters were fixed as in the
algorithms’ descriptions.

Displaying WWAID results would have been mislead-
ing because of the large percentage of failed detections.
As explained earlier, if change was detected, ∆ would
be competitive to that of the other methods but in about

Number of observations to detection (∆)

0.05 0.1 0.15 0.2 0.25
0

100

200

300

400

500

600

WRABD
Shewhart
SPRT

offset δ

(a) N = 10

Number of observations to detection (∆)

0.05 0.1 0.15 0.2 0.25
0

500

1000

1500

2000

offset δ

(b) N = 50

Fig. 5. Average ∆ and 95% confidence intervals obtained
from 100 runs with p = 0.20 and p∗ = p + δ. The warm-up
length for WRABD was m = 5 batches.

half of the runs, change was not detected within the first
2000 observations. Thus averaging the existent detection
lengths and ignoring the non-detection will give a false
impression of the method.

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 7

It appears that for the chosen settings, the best al-
gorithm is WRABD followed by SPRT. However, to
evaluate the methods in full, we need to consider their
in-control behaviour. Table 1 provides the number of
observations to false detection for the 4 methods. The
estimated values are the averages of 100 simulation runs
with p∗ = p = 0.2. The 95% confidence intervals are also
shown.

TABLE 1
Simulation results (± 95% confidence interval), and the

predicted number of observations to false alarm
(in-control)

N = 10 N = 50

Algorithm Simulation Predicted Simulation Predicted
WWAID 196 ±215 – 439 ±288 –
WRABD 62 ±10 60 372 ±58 371
Shewhart 1614 ±340 1570 20022 ±3656 19911
SPRT 968 ±162 978 1068 ±212 978

The in-control ∆SPRT is L(p)/α. To calculate L(p) (8),
we need to specify a predicted value of p∗ in order to
be able to initialise the parameters of the SPRT. The
results in the table are for p∗predicted = 0.35. In the case
of WWAID, the detection failure, which was a severe
drawback for the out-of-control scenario, can be counted
as an asset now.

Taking into account both out-of-control and in-control
behaviour, WRABD and SPRT stand out as the two
main rivals. While WRABD is quicker to detect small
changes, it is also quicker to raise a false alarm. The
difference between the methods are less pronounced
for larger values of the offset δ. Thus if the change in
the classification problem is drastic (e.g., when some
class labels are swapped), the methods may be ranked
differently.

Another caveat is that the analyses of Shewhart and
SPRT always assume that p and p∗ are given in advance.
While this is reasonable in monitoring established pro-
cesses, in classification we only have online estimates
(not necessarily very good ones) of these probabilities.
Therefore it is imperative to evaluate the methods in a
real-world scenario. The main question is still whether
using one algorithm or another makes a substantial
difference to the classification accuracy in changing en-
vironments.

Prediction formulas for a linear trend for the Shewhart
and CUSUM algorithms have been derived elsewhere
[4]. The analysis here only applies to abrupt change, and
the simulations were run to reflect this.

5 EXPERIMENTAL RESULTS

5.1 Datasets

Twenty eight real data sets were used in the experiment.
They are shown in Table 2 sorted by the total number of
objects. The features in all data sets are numerical and
there are no missing values.

TABLE 2
Datasets used in the experiment

Dataset Features Classes Objects Source
iris 4 3 150 UCI1

wine 13 3 178 UCI
sonar 60 2 208 UCI

laryngeal1 16 2 213 Collection2

glass 9 6 214 UCI
thyroid 5 3 215 UCI

votes 16 2 232 UCI
voice3 10 3 238 Collection
breast 9 2 277 UCI
heart 13 2 303 UCI
liver 6 2 345 UCI

spect 44 2 349 Collection
ionosphere 34 2 351 UCI
laryngeal3 16 3 353 Collection

voice9 10 9 428 Collection
wbc 30 2 569 UCI

palynomorphs 31 3 609 private3

laryngeal2 16 2 692 Collection
pima 8 2 768 UCI

vehicle 18 4 846 UCI
vowel 11 10 990 UCI

german 24 2 1000 UCI
image 19 7 2310 UCI

scrapie 14 2 3113 private4

spam 57 2 4601 UCI
phoneme 5 2 5404 UCI
satimage 36 6 6435 UCI
pendigits 16 10 10992 UCI

1UCI [6] http://www.ics.uci.edu/∼mlearn/MLRepository.html
2Collection http://www.informatics.bangor.ac.uk/∼kuncheva/
activities/real data full set.htm
3Images of pieces of kerogen extracted from microscope images of
palynomorphs
4Data on scrapie disease in sheep (related to BSE in cows), provided
by DEFRA, UK, http://www.defra.gov.uk/

5.2 Experimental set-up

The online linear discriminant classifier (O-LDC) was
used in all experiments. Together with the four change
detection methods considered hitherto, we coded the do-
not-update and the fixed window methods. The size of
the window was set at N = 50, and this was adopted
as the batch size for all methods. With each data set, we
first took aside a 10% stratified sample to be used for
testing. Another stratified sample of N = 50 objects was
taken from the remaining 90% of the data for training the
initial classifier.2 The remaining part of the training data
was augmented to size 1000, and shuffled to simulate
i.i.d streaming data.

As an example, consider a data set of 400 objects.
A random subsample of 40 objects is removed to be
used for testing, leaving 360 objects for training. Another
random stratified sample of 50 objects will train the
initial classifier. The remaining 310 objects will be pooled
with a random sample of 690 taken from that set, to
make up the online data of 1000 objects.

One object from the online data set is submitted at

2. When N was less than the number of features, the initial covari-
ance matrix was taken to be the identity matrix, reducing the linear
discriminant classifier to the nearest mean classifier with Euclidean
distance.

8 TECHNICAL REPORT BCS-TR-001-2009

a time and labelled by the current classifier. As it is as-
sumed that the true label becomes available immediately,
we know whether the object has been correctly labelled.
This 0 or 1 is fed to the respective detection method.
The batch-based methods (Fixed Window, WRBAD and
Shewhart) will only issue a signal after they have seen
a whole batch of 50 objects. The instance-based methods
(WWAID and SPRT) may signal at any observation.

The parameter choices for the methods were not opti-
mised. They are given in Table 3.

TABLE 3
Parameter values used in the experiments. (The

notations are as in the method description)

Fixed window WWAID WRABD Shewhart SPRT
N = 50 w0 = 50 N = 50 N = 50 α = 0.05
– Tw = 2 f = 3 f = 3 β = 0.05
– Td = 3 m = 5 – –
– – β = 0.5 – –
– – γ = 0.5 – –

If change is detected, the window is resized. The re-
sizing heuristics for WRABD and WWAID are specified
within the method descriptions. For Shewhart and SPRT
we adopted the following simple rule. While there is
no change, keep the window growing. Here we use the
fact that O-LDC can be updated in constant time with
each new observation, and so the training window can
be practically unlimited. As soon as change is detected,
the window is shrunk to the last batch of 50 objects and
a new linear classifier is trained on that.

The analyses and the simulations in Section 4 assumed
a “sterile” environment where the error of the classifier
did not change along with the constant updates of the
classifier. In real-life situations, the classifier may change
with each new observation or batch, so the thresholds for
the Shewhart and SPRT methods are not constant. What
is more, there is no pre-assigned values for p and p∗,
so the initial thresholds must be estimated from data.
The strategy adopted here was as follows. The initial
thresholds were estimated using the training error of the
initial classifier, etraining. The thresholds were updated
with each new observation. The value p needed for
the update was calculated as the proportion of wrong
predictions since last change detection or since the start
of the experiment, if there has been no detection. The
predicted value of p∗ needed for initialising SPRT was
set at p∗predicted = etraining +0.3, and was updated at each
step, together with p, using the same offset of 0.3. We
put a lower limit N for the size of the detection window
for the instance-based methods SPRT and WWAID. In
case the last detection was sooner than N steps back,
the classifier kept being updated but change detection
was withheld, until the detection window reached size
N .

The classification error was evaluated on the testing
set after each new observation, giving a sequence of 1000
values. This experiment was run 100 times for each data
set and each method. The runs were synchronised for

all 6 detection methods. This means that, in each run,
all methods received exactly the same training, testing
and online data sets, and the 1000 objects in the online
data set were submitted in the same order.

We simulated abrupt changes at step 400 and then
at step 800. Following Klinkenberg’s model, the change
was implemented by picking randomly two classes in
the data set and swapping their labels. If there were only
two classes originally, the labels would be swapped at
step 400 and returned to the initial labels at step 800.

5.3 Results

Figure 6 displays the results with the 6 methods. Each
plot shows the classification error as a function of “time”,
i.e., the number of the incoming observations. The plot-
ted error values are the averages across the data sets and
across the 100 runs for each data set. Clearly data sets
have very different errors and an average estimate of the
error would not make sense as a value. However, we
observed a compelling similarity among the patterns of
the error across the data sets, and this justifies the choice
of display. As a reference, in each subplot we show also
the error pattern with the Fixed window method.

The change detection patterns of WWAID, WRABD,
Shewhart and SPRT are displayed in Figure 7. The x-axis
corresponds again to the incoming observations. The y-
axis represents the average number of times (out of 100
runs), a change has been detected at observation x. The
ideal pattern is also shown.

WWAID WRABD

Shewhart SPRT

Fig. 7. Average number of detections out of 100 runs.
The ideal detection pattern with singleton peaks at obser-
vations 400 and 800 (height 100) is also plotted.

To measure the overall quality of a method we chose
the average error across the 1000 incoming observations.
Let Ei,j,k be the error of the k-th run for method i
and data set j, where k = 1, . . . , 100, i = 1, . . . , 6,
j = 1, . . . , 28. The methods were ranked on each data
set from 1 (best) to 6 (worst) using Ēi,j,•, where index •
means average across the possible values of the index.
Table 4 shows the 6 methods, sorted by their average

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 9

500 1000
0

0.2

0.4

0.6

0.8
No update

500 1000
0

0.2

0.4

0.6

0.8
Fixed Window

500 1000
0

0.2

0.4

0.6

0.8
WWAID

500 1000
0

0.2

0.4

0.6

0.8
WRABD

500 1000
0

0.2

0.4

0.6

0.8
Shewhart

500 1000
0

0.2

0.4

0.6

0.8
SPRT

Fig. 6. Classification errors for the 6 window updating methods. The Fixed window pattern is shown in each plot for
reference.

ranks. Friedman’s ANOVA on the ranks shows that
there are significant differences between the 6 methods
(χ2 = 108.43, df = 5, p ≈ 0). The entries in Table 4 show
the p-values for the paired Wilcoxon signed rank test.
The input for each test was the paired data for methods
i1 and i2 and data set j, for example, Ei1,j,• and Ei2,j,•

for j = 1, . . . , 28. Values below 0.01 indicate a significant
difference between the methods.

The table shows that SPRT outperforms all the other
methods, followed by the group of the three change-
detection methods. Fixed window is better than No
update but worse than WRABD. Schematically,

SPRT > {Shewhart, WWAID, WRABD}
> Fixed window > No update

To detail the comparison even further, paired t-test
was carried out for each pair of methods and each data
set. The paired data for methods i1 and i2 and data set j,
for example, were Ei1,j,k and Ei2,j,k for k = 1, . . . , 100.
Each method participates in 5×28 = 140 comparisons.
Table 5 shows the win/loss scores. Column ‘Wins’ is
the total number of pairwise comparisons where the
method was found significantly better (α = 0.05) than
the competitor and column ‘Losses’ is the number of
comparisons lost against the other method. The num-
ber of draws is therefore 140−Wins−Losses. The last
column shows a performance index (PI) calculated as
Wins−Losses. Note the significant gap in PI between
SPRT and the next best method (Shewhart) and the one
between WRABD and the Fixed window method.

Further comments on the individual methods are
given below

TABLE 5
Win/Loss results and

Performance Index (PI) = Wins – Losses

Method Wins Losses PI
SPRT 133 3 130

Shewhart 82 49 33
WWAID 80 47 33
WRABD 69 57 12

Fixed window 25 112 –87
No update 8 132 –124

1) No-update. The No-update method is expectedly the
worst. It shows a seemingly strange drop in the
error from step 800 onwards. The reason for this
is that a large proportion of the data sets consist
of two classes only. In this case, from step 800 to
step 1000 the class assignment will be exactly as
the original one, to which the classifier has been
tuned for the first 400 steps. The classifier “still
remembers” the first part of the data set, and this
puts it in a privileged position. The initial dip in the
error is not surprising either. Since we use O-LDC
with all methods, the difference in the errors will
only come from insufficient or inadequate training
data. In the case of the No-update method, the
training set grows without interruption, leading to
a stable lowest error, until the first change.

2) Fixed window. The behaviour of the Fixed Window
classifier is also consistent with the expectation.
The classifier shows stable performance on all the
batches except on the ones where the old classifier

10 TECHNICAL REPORT BCS-TR-001-2009

TABLE 4
Average ranks and Wilcoxon signed rank test results

Method Average 2 3 4 5 6
rank

1 SPRT 1.11 0.000004 0.000004 0.000011 0.000004 0.000004
2 Shewhart 2.86 0.909351 0.412347 0.000004 0.000005
3 WWAID 3.04 0.284504 0.000004 0.000004
4 WRABD 3.29 0.000046 0.000004
5 Fixed window 5.00 0.001129
6 No update 5.71

is completely inadequate. The error is high for
one batch only, and drops to the basic value with
the following batch. Apparently, training O-LDC
with a larger sample than N = 50 is beneficial,
as demonstrated by WWAID, Shewhart, SPRT and
even No-update.

3) WWAID. On the simulations, WWAID was found
to have quite a large variability in the num-
ber of observations to detection ∆. Nevertheless,
this method seems to detect the changes quickly
enough, at the same time keeping the false detec-
tion rate to minimum. The crucial factor for this
good behaviour is that the changes in the error are
drastic, larger than the offset δ used in the previous
simulations.

4) WRABD. WRABD is a close competitor to the con-
trol chart methods. It does not rely on pre-assigned
threshold values. In fact, its detection pattern is
more accurate than that of Shewhart (Figure 7).
The batch update, however, is slower to follow
the detection than an instant update as in SPRT,
which comes as a disadvantage in terms of overall
accuracy.

5) Shewhart. The “chainsaw effect” seen in Figure 6
comes from the multiple false detections as indi-
cated in Figure 7. This is inconsistent with the sim-
ulation results in Section 4 which rank Shewhart
as the method with the best in-control behaviour,
i.e., largest ∆ to false alarm. The reason for this
discrepancy is the way we chose to update the
threshold. In the original method the threshold
is set in advance to the correct known value of
p + 3σ. Here the threshold was updated at each
step as the average error since the last detection.
This choice may have put the Shewhart method
at disadvantage. The same strategy was applied to
SPRT but it seemed to have coped with the variable
threshold much better.

6) SPRT. The abrupt changes simulated by swapping
class labels lead to a drastic increase in error, which
is expected to be picked within the first batch by
both Shewhart and WRABD methods. However,
the batch detection methods can only signal a
change after a whole batch while SPRT can do that
at any time. This explains the rapid dip in the error

shortly after the change occurs.

The overall results from the experimental study favour
SPRT followed by Shewhart, WWAID and WRABD.

6 CONCLUSIONS

We investigated the suitability of control charts, specifi-
cally Shewhart and SPRT, as change detection methods
for classification in changing environments. Two meth-
ods found in the machine learning literature, termed here
WWAID and WRABD, were also studied. The analysis
and the simulations of abrupt change did not pick a
clear winner among the methods, but favoured SPRT
and WRABD followed by Shewhart.

Since the acid test for all four methods is their clas-
sification performance, we simulated abrupt change on
real data sets by swapping class labels. We augmented
the set of methods with two straw men: the No update
classifier, where no changes were being detected, and
the Fixed window classifier, where a new classifier was
trained on each new batch of the data. The same Online
Linear Discriminant Classifier (O-LDC) was applied for
all 6 change-detection methods. The results demonstrate
the potential of the two control charts. As a by-product,
these methods come with ready made ARL analyses
and closed form solutions for specific types of change,
e.g., abrupt and linear. This will enable theoretical com-
parisons between different detection methods prior to
embedding one of them into an online classifier.

We should be cautious and not read too much in the
dominance of SPRT that came as the result of the exper-
iments. First, the change introduced by swapping labels
was so drastic, that all methods were likely to detect it
within one batch. Being an instance-based method, SPRT
was capable of detecting a change earlier than a full
batch size. Second, the success of SPRT and Shewhart
can be attributed, to some extent, to the serendipitous
choice of a window resizing heuristic and parameter
values. This comes to highlight the importance of all
the choices that accompany the design of any online
classification system. Third, this study looks at abrupt
changes while there are many other possible change
simulation scenarios.

Our future investigation plans include analysis and
design of ensembles of control chart detectors. It would
be interesting to derive expressions for ∆ (number of

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 11

observations to detection) for Shewhart and SPRT when
the thresholds are not fixed in advance but depend on
estimates from the streaming data.

APPENDIX

Analysis of the WRABD

Here we derive an expression for the detection time
∆WRABD of the WRABD algorithm (Figure 1). To be able
to do so, consider the following scenario. Assume that
the data has been coming from a stationary distribution,
long enough so that the classifier does not benefit from
expanding the training data window any further. Denote
by p the true error rate of the classifier. At some time
point, a rapid change of the underlying distribution
occurs so that the error rate increases to p∗ on the new
distribution. To ease the analysis we shall assume that
the change occurs after batch Bc−1 and before batch Bc.
Let td be the batch number at which a change is detected.

The previous errors ec−m, . . . , ec−1 needed for cal-
culating p̄ are estimated using the respective current
classifiers at batches c − m, . . . , c − 1. As we assumed
that the classifier model is already fully trained, the
variability in p̄ will only be due to the different testing
batches. Since they all come from the distribution before
the change, the total number of errors in m batches is
a binomial random variable with parameters mN and
p. For large enough mN , the average error across the
past m batches can be approximated with a normal
random variable X with mean p and standard deviation
σ =

√

p(1 − p)/(mN).
The number of errors ec in batch Bc, coming from

the new distribution, is itself a binomial random vari-
able. Provided that p∗N ≥ 5 and (1 − p∗)N ≥ 5, the
error rate can be approximated by a normal random
variable Y with mean p∗ and standard deviation σ∗ =
√

p∗(1 − p∗)/N . Form a new random variable ζ = Y −X .
It will have normal distribution with mean p∗ − p and
standard deviation

√

(σ∗)2 + (σ)2.
The detection inequality in WRABD can be reformat-

ted as ec − p̄ > f σ̄
m

. Note that σ̄
m

is an estimate of σ. To
make the analysis feasible, we assume that σ is given
and fixed, so the detection threshold does not depend
on data. The detection inequality becomes ec − p̄ > fσ.
Restrictive, as it may be, without this assumption the
the analysis becomes more complicated, and is hardly
justified for the purposes of the current study.

The probability that the change is detected within a
single batch (Bc) of size N is

Pd(0) = Pr(ζ > fσ)

= 1 − Pr(ζ ≤ fσ)

= 1 − Φ

(

fσ − p∗ + p
√

(σ∗)2 + (σ)2

)

,

where Φ is the cumulative distribution function for the
normal distribution.

The probability Pd(k) that the change is detected at
batch Bc+k, where 1 ≤ k < m, needs a further elabora-
tion. In this case m−k batches from the old distribution
and k batches from the new distribution will be used
in the calculation of p̄. The number of errors in the m
batches will be a sum of two binomial variables with
distributions B((m − k)N, p) and B(kN, p∗). Taking the
normal approximations of both, the error rate variable
Y , associated with p̄, will be a normal random variable
with mean m−k

m
p + k

m
p∗ and standard deviation

σ =

√

(m − k)p(1 − p) + kp∗(1 − p∗)

m2N
.

Recall the assumption in this scenario: adding new
training data from the original distribution will not
change the classifier. However, until detection occurs,
the training data will be augmented with batches from
the new distribution. We need to assume in addition
that adding batches from the new distribution is not
going to “dilute” too much the training set and disturb
the learned classifier. In other words, the classifier is
supposed to have the same probability of error p∗ on
all unseen batches coming from the new distribution.

Using again ζ = Y −X , the probability that the change
occurring at c is detected at batch Bc+k, where 1 < k < m
is

Pd(k) = Pr(ζ > fσ) = 1 − Φ

(

fσ + m−k
m

(p − p∗)
√

(σ∗)2 + (σ)2

)

.

For any k ≥ m, we will have a static distribution with
probability of error p∗. Then the mean of ζ is zero, and
σ =

√

p∗(1 − p∗)/mN = σ∗/
√

m. Hence

Pd(m) = Pr(ζ > fσ) = 1 − Φ

(

f

√

m

m + 1

)

Regarding Pd(m) as probability of “success”, the number
of batches to detection is a random variable with a geo-
metric distribution with parameter Pd(m) and expected
value 1/Pd(m) (batches). Therefore, if we fall in the “non-
detection zone” where k ≥ m, then we can expect

∆non−detection
WRABD = N

(

(m − 1) +
1

Pd(m)

)

observations to detecting a change.
To find the total number of observations to detecting

a change for WRABD, we create a discrete random
variable taking values in the set V = {0, 1, 2, . . . ,m− 1}.
These values correspond to the possible number of
batches to detection starting with Bc. The probability
mass function is

P (i) = Pr(detection in batch Bc+i)

=
1

Z
Pd(i)

i−1
∏

k=0

(1 − Pd(k)), 1 ≤ i ≤ m − 1,

where Z is a normalising constant which amounts to
the probability of detecting a change within m batches

12 TECHNICAL REPORT BCS-TR-001-2009

including Bc.

Z = 1 −
m−1
∏

k=0

(1 − Pd(k)).

For i = 0, P (0) = Pd(0). The expected number of
observation according to this random variable is

∆detection
WRABD = N

(

1 +
1

Z

m−1
∑

i=1

i Pd(i)

i−1
∏

k=0

(1 − Pd(k))

)

.

The 1 in the brackets reflects the fact that Bc needs to
be counted as well. The total number of observation to
change is

∆WRABD = Z∆detection
WRABD + (1 − Z)∆non−detection

WRABD

= N

(

Z +

m−1
∑

i=1

i Pd(i)

i−1
∏

k=0

(1 − Pd(k))

)

+ (1 − Z)N

(

(m − 1) +
1

Pd(m)

)

Continuity correction. Due to the discrete nature of
the binomial distribution the theoretical calculation of
∆ using normal distribution is inaccurate, especially for
small N . Consider the following example. Suppose that
we are investigating the case where batches of size N
are taken and the number of errors is compared to a
threshold he. Alarm is triggered if the number of errors
within the batch strictly exceeds he. Let N = 10 and
p = 0.2. According to the WRABD detection step (with
factor f = 3),

he =
⌊

N ×
(

p + 3
√

p(1 − p)/N
)⌋

= ⌊10×0.5795⌋ = 5 errors.

This means that an alarm will be raised if strictly more
than 5 observations from the batch of 10 are misclassi-
fied. The 3σ-confidence interval, assuming normal dis-
tribution, gives probability of false alarm (type I error)
α = 0.00135. The number of observations to alarm, pre-
dicted using the normal approximation, is N/α ≈ 7408.
Using the binomial distribution, the probability of type
I error will be αB = 1−B(he, N, p) ≈ 0.00637, where B is
the cumulative binomial distribution function. Hence the
true number of observations to alarm is N/αB ≈ 1570.

To correct for the error in the theoretical prediction,
we adjust the factor for the confidence interval, f , and
still use the normal approximation of the binomial dis-
tribution. The adjusted factor f ′ is

f ′ = Φ−1(1 − αB) = Φ−1(B(he, N, p)). (9)

where
he =

⌊

N ×
(

p + f
√

p(1 − p)/N
)⌋

. (10)

For the example above, f ′ = Φ−1(B(5, 10, 0.2)) =
2.4910. With this f ′, the adjusted type I error is α′ = αB ,
and the predicted number of observations to detection
is the correct one.

Consider the more general case where we have a
binomial random variable X with parameters N and p∗

and a threshold he calculated through (10) for a fixed
p. The adjusted factor, f ′′, is obtained in the following
way. The probability for X > he is 1 − B(he, N, p∗).
Using the normal approximation, Pr(X > he) = 1 −
Φ((p + f ′′σ − p∗)/σ∗), where σ and σ∗ are the respective
standard deviations. As both expressions amount to the
same probability, Pr(X > he), we can take B(he, N, p∗) =
Φ((p + f ′′σ − p∗)/σ∗) and solve for f ′′

f ′′ =
1

σ
(σ∗Φ−1(B(he, N, p∗)) + p∗ − p). (11)

Notice that f ′′ reduces to f ′ for p∗ = p.

We carried out simulation runs to illustrate the match
between the empirical and the theoretical ∆WRABD.
With the continuity correction in place, Figure 8 shows
∆WRABD as a function of p∗ along with two simulation
curves. The parameter values were: batch size N = 10
and N = 50, past batches m = 5, confidence interval
factor f = 3 and fixed p = 0.2. Each of the empirical
curves is the average of 100 simulation runs. The 95%
confidence intervals are also shown.

∆WRABD

0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

250

300

Theoretical (N = 10)
Obtained (N = 10)
Theoretical (N = 50)
Obtained (N = 50)

offset δ

Fig. 8. Number of observations to detection of change for
the WRABD algorithm.

ACKNOWLEDGEMENTS

I am grateful to Chris Whitaker and Juan Rodrı́guez
for the insightful discussions and for pointing to me
crucial reference sources which fuelled the inspiration
for this study. This work was sponsored by EPSRC grant
#EP/D04040X/1.

REFERENCES

[1] C. A. Acosta-Mejia. Improved p charts to monitor process quality.
IIE Transactions, 31:509–516, 1999.

[2] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning
algorithms. Machine Learning, 6:37–66, 1991.

KUNCHEVA: CONTROL CHARTS FOR DETECTING CONCEPT CHANGE 13

[3] M. Baena-Garcı́a, J. Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà,
and R. Morales-Bueno. Early drift detection method. In Fourth
International Workshop on Knowledge Discovery from Data Streams,
pages 77–86, 2006.

[4] A. F. Bissel. The performance of control charts and cusums under
linear trend. Applied Statistics, 33:145–151, 1984.

[5] M.M Black and R.J. Hickey. Maintaining the performance of a
learned classifier under concept drift. Intelligent Data Analysis,
3(6):453–474, 1999.

[6] C. L. Blake and C. J. Merz. UCI repository of machine
learning databases, 1998. http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

[7] A. Blum. Empirical support for Winnow and weighted-majority
based algorithms: results on a calendar scheduling domain. In
Proc. 12th International Conference on Machine Learning, pages 64–
72, San Francisco, CA., 1995. Morgan Kaufmann.

[8] D. Brook and D.A. Evans. An approach to the probability
distribution of cusum run length. Biometrika, 59:539–549, 1972.

[9] S. J. Delany, P. Cunningham, and A. Tsymbal. A comparison of
ensemble and case-based maintenance techniques for handling
concept drift in spam filtering. Technical Report TCD-CS-2005-
19, Trinity College Dublin, 2005.

[10] W. Fan, S. J. Stolfo, and J. Zhang. Application of adaboost for
distributed, scalable and on-line learning. In Proc KDD-99, San
Diego, CA, 1999. ACM Press.

[11] G. Forman. Tackling concept drift by temporal inductive transfer.
Technical Report HPL-2006-20(R.1), HP Laboratories Palo Alto,
June 2006.

[12] J. C. Fu, G. Shmueli, and Y. M. Chang. A unified Markov chain
approach for computing the run length distribution in control
charts with simple or compound rules. Statistics & Probability
Letters, 65:457–466, 2003.

[13] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with
drift detection. In Advances in Artificial Intelligence - SBIA 2004,
17th Brazilian Symposium on Artificial Intelligence, volume 3171 of
Lecture Notes in Computer Science, pages 286–295. Springer Verlag,
2004.

[14] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining data streams
under block evolution. ACM SIGKDD Explorations Newsletter, 3:1–
10, 2002.

[15] D.J. Hand. Classifier technology and the illusion of progress (with
discussion). Statistical Science, 21:1–34, 2006.

[16] M. Harries and K. Horn. Detecting concept drift in financial
time series prediction using symbolic machine learning. In Eighth
Australian Joint Conference on Artificial Intelligence, pages 91–98,
Singapore, 1995. World Scientific Publishing.

[17] R.J. Hickey and M. M. Black. Refined time stamps for concept drift
detection during mining for classification rules. In Proceedings of
the International Workshop on Temporal, Spatial and Spatio-Temporal
Data Mining (TSDM2000), Lecture Notes in Artificial Intelligence,
volume 2007, pages 20–30. Springer-Verlag: Berlin, 2000.

[18] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing
data streams. In In Proc. 7th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 97–106. ACM
Press, 2001.

[19] R. Klinkenberg. Using labeled and unlabeled data to learn drifting
concepts. In Workshop notes of the IJCAI-01 Workshop on Learning
from Temporal and Spatial Data, pages 16–24, Menlo Park, CA, USA,
2001. IJCAI, AAAI Press.

[20] R. Klinkenberg and T. Joachims. Detecting concept drift with
support vector machines. In Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning (ICML), pages 487–494, San
Francisco, CA, USA, 2000. Morgan Kaufmann.

[21] R. Klinkenberg and I. Renz. Adaptive information filtering:
Learning in the presence of concept drifts. In AAAI-98/ICML-98
workshop Learning for Text Categorization, Menlo Park,CA, 1998.

[22] J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: A
new ensemble method for tracking concept drift. In Proc 3rd
International IEEE Conference on Data Mining, pages 123–130, Los
Alamitos, CA, 2003. IEEE Press.

[23] L. I. Kuncheva. Combining Pattern Classifiers. Methods and Algo-
rithms. John Wiley and Sons, N.Y., 2004.

[24] M.M. Lazarescu and S. Venkatesh. Using selective memory to
track concept drift effectively. In Intelligent Systems and Control,
volume 388, Salzburg, Austria, 2003. ACTA Press.

[25] N. Littlestone. Learning quickly when irrelevant attributes
abound: A new linear threshold algorithm. Machine Learning,
2:285–318, 1988.

[26] M. Markou and S. Singh. Novelty detection: A review, Part I:
Statistical approaches. Signal Processing, 83(12):2481– 2521, 2003.

[27] C. Mesterharm. Tracking linear-threshold concepts with winnow.
Journal of Machine Learning Research, 4:819–838, 2003.

[28] E. S. Page. Continuous inspection schemes. Biometrika, 41:100–114,
1954.

[29] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar. Learn++: An
incremental learning algorithm for supervised neural networks.
IEEE Transactions on Systems, Man and Cybernetics, 31(4):497–508,
2001.

[30] M. R. Reynolds Jr and Z. G. Stoumbos. The SPRT chart for
monitoring a proportion. IIE Transactions, 30:545–561, 1998.

[31] M. R. Reynolds Jr and Z. G. Stoumbos. A general approach
to modeling CUSUM charts for a proportion. IIE Transactions,
32:515–535, 2000.

[32] M. Salganicoff. Density-adaptive learning and forgetting. In
Proceedings of the 10th International Conference on Machine Learning,
pages 276–283, 1993.

[33] K. O. Stanley. Learning concept drift with a committee of decision
trees. Technical Report AI-03-302, Computer Science Department,
University of Texas-Austin., 2003.

[34] S. H. Steiner. Grouped data exponentially weighted moving
average control charts. Applied Statistics, 47:203–216, 1998.

[35] W. N. Street and Y. S. Kim. A streaming ensemble algorithm
(SEA) for large-scale classification. In Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 377–382. ACM Press, 2001.

[36] A. Tsymbal. The problem of concept drift: definitions and related
work. Technical Report TCD-CS-2004-15, Trinity College Dublin,
April 2004.

[37] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept drifting
data streams using ensemble classifiers. In Proceedings of the 9th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 226–235. ACM Press, 2003.

[38] G. Widmer. Tracking context changes through meta-learning.
Machine Learning, 27(3):259–286, 1997.

[39] G. Widmer and M. Kubat. Learning in the presence of concept
drift and hidden contexts. Machine Learning, 23:69–101, 1996.

